

Bedienungsanleitung

VLT® AQUA Drive FC 202 110-800 kW, Enclosures D9h-D10h and E5h-E6h

Inhalt

	1	Einf	führung	8
1.3 Zulassungen und Zertifizierungen 8 1.4 Entsorgung 9 2 Sicherheit 10 2.1 Sicherheitssymbole 10 2.2 Qualifiziertes Personal 10 2.3 Sicherheitsmaßnahmen 11 3 Produktübersicht 14 3.1 Bestimmungsgemäße Verwendung 14 3.2 Was ist ein schaltschrankbasierter Frequenzumrichter? 14 3.3 Position der Optionen in einem schaltschrankbasierten Frequenzumrichter 17 3.4 Typendaten 19 3.4.1 Ermittlung des Frequenzumrichters und seiner Optionen 19 3.4.1 Ermittlung des Frequenzumrichters und seiner Optionen 19 3.4.2 Identifizierung der Baugröße 21 3.5 Nennleistungen und Abmessungen der Baugrößen D9h-D10h und E5h-E6h 25 3.6 Steuerlachtür 26 3.6.1 Steuerfachtür 28 3.6.2 Steuerfachtür 28 3.6.3 Bedienehteil (LCP) 29 3.6.4 LCP-Menü 31 4.1		1.1	Zusätzliche Materialien	8
2 Sicherheit 10 2.1 Sicherheitssymbole 10 2.2 Qualifiziertes Personal 10 2.3 Sicherheitsmaßnahmen 11 3 Produktübersicht 14 3.1 Bestimmungsgemäße Verwendung 14 3.2 Was ist ein schaltschrankbasierter Frequenzumrichter? 14 3.3 Position der Optionen in einem schaltschrankbasierten Frequenzumrichter 17 3.4 Typendaten 19 3.4.1 Ermittlung des Frequenzumrichters und seiner Optionen 19 3.4.2 Identifizierung der Baugröße 21 3.4.3 Bestimmung des Optionscodes 21 3.5 Nennleistungen und Abmessungen der Baugrößen D9h-D10h und E5h-E6h 25 3.6.1 Steuerienschub und LCP-Bedieneinheit 26 3.6.2 Steuerfach Übersicht 26 3.6.3 Bedieneinheit (LCP) 29 3.6.4 LCP-Menü 31 4 Mechanische Installation 34 4.1 Gelieferte Teile 34 4.2 Teillieferung 34 4.3 Bentitigte Werkzeuge 35 4.4 Lagerung 35 4.5 Betriebsumgebung 35 4.5 Betriebsumgebung – Übersicht 35 4.5 Betr		1.2	Handbuchversion	8
2 Sicherheit 10 2.1 Sicherheitsymbole 10 2.2 Qualifiziertes Personal 10 2.3 Sicherheitsmaßnahmen 11 3 Produktübersicht 14 3.1 Bestimmungsgemäße Verwendung 14 3.2 Was ist ein schaltschrankbasierter Frequenzumrichter? 14 3.3 Position der Optionen in einem schaltschrankbasierten Frequenzumrichter 17 3.4 Typendaten 19 3.4.1 Ermittung des Frequenzumrichters und seiner Optionen 19 3.4.2 Identifizierung der Baugröße 21 3.4.3 Bestimmung des Optionscodes 21 3.5 Nennleistungen und Abmessungen der Baugrößen D9h–D10h und E5h–E6h 25 3.6.1 Steuerfach Übersicht 26 3.6.2 Steuerfach Übersicht 26 3.6.3 Bedieneinheit (LCP) 29 3.6.4 LCP-Menü 31 4 Mechanische Installation 34 4.1 Gelieferte Teile 34 4.2 Teillieferung 34 4.3 Bertriebsumgebung 35 4.5 Betriebsumgebung 35 4.5.1 Betriebsumgebung – Übersicht 36 4.5.2 Ga		1.3	Zulassungen und Zertifizierungen	8
2.1 Sicherheitssymbole 10 2.2 Qualifiziertes Personal 10 2.3 Sicherheitsmaßnahmen 11 3 Produktübersicht 14 3.1 Bestimmungsgemäße Verwendung 14 3.2 Was ist ein schaltschrankbasierter Frequenzumrichter? 14 3.3 Position der Optionen in einem schaltschrankbasierten Frequenzumrichter 17 3.4 Typendaten 19 3.4.1 Ermittlung des Frequenzumrichters und seiner Optionen 19 3.4.2 Identifizierung der Baugröße 21 3.4.3 Bestimmung des Optionscodes 21 3.5 Nennleistungen und Abmessungen der Baugrößen D9h-D10h und E5h-E6h 25 3.6 Steuereinschub und LCP-Bedieneinheit 26 3.6.1 Steuerfachtür 26 3.6.2 Steuerfachtür 28 3.6.3 Bedieneinheit (LCP) 29 3.6.4 LCP-Menü 31 4 Mechanische Installation 34 4.1 Gelieferte Teile 34 4.2 Teillieferung 35 4.5		1.4	Entsorgung	9
2.1 Sicherheitssymbole 10 2.2 Qualifiziertes Personal 10 2.3 Sicherheitsmaßnahmen 11 3 Produktübersicht 14 3.1 Bestimmungsgemäße Verwendung 14 3.2 Was ist ein schaltschrankbasierter Frequenzumrichter? 14 3.3 Position der Optionen in einem schaltschrankbasierten Frequenzumrichter 17 3.4 Typendaten 19 3.4.1 Ermittlung des Frequenzumrichters und seiner Optionen 19 3.4.2 Identifizierung der Baugröße 21 3.4.3 Bestimmung des Optionscodes 21 3.5 Nennleistungen und Abmessungen der Baugrößen D9h-D10h und E5h-E6h 25 3.6 Steuereinschub und LCP-Bedieneinheit 26 3.6.1 Steuerfachtür 26 3.6.2 Steuerfachtür 28 3.6.3 Bedieneinheit (LCP) 29 3.6.4 LCP-Menü 31 4 Mechanische Installation 34 4.1 Gelieferte Teile 34 4.2 Teillieferung 35 4.5	2	Sich	nerheit	10
2.2 Qualifiziertes Personal 10 2.3 Sicherheitsmaßnahmen 11 3 Produktübersicht 14 3.1 Bestimmungsgemäße Verwendung 14 3.2 Was ist ein schaltschrankbasierter Frequenzumrichter? 14 3.3 Position der Optionen in einem schaltschrankbasierten Frequenzumrichter 17 3.4 Typendaten 19 3.4.1 Ermittlung des Frequenzumrichters und seiner Optionen 19 3.4.2 Identifizierung der Baugröße 21 3.4.3 Bestimmung des Optionscodes 21 3.5 Nennleistungen und Abmessungen der Baugrößen D9h-D10h und E5h-E6h 25 3.6 Steuereinschub und LCP-Bedieneinheit 26 3.6.1 Steuerfach – Übersicht 26 3.6.2 Steuerfacht- Übersicht 26 3.6.3 Bedieneinheit (LCP) 29 3.6.4 LCP-Menü 31 4 Mechanische Installation 34 4.1 Geliefert Teile 34 4.2 Teillieferung 35 4.5 Benötigte Werkzeuge 35				
2.3 Sicherheitsmaßnahmen 11 3 Produktübersicht 14 3.1 Bestimmungsgemäße Verwendung 14 3.2 Was ist ein schaltschrankbasierter Frequenzumrichter? 14 3.3 Positiön der Optionen in einem schaltschrankbasierten Frequenzumrichter 17 3.4 Typendaten 19 3.4.1 Ermittlung des Frequenzumrichters und seiner Optionen 19 3.4.2 Identifizierung der Baugröße 21 3.4.3 Bestimmung des Optionscodes 21 3.5 Nennleistungen und Abmessungen der Baugrößen D9h-D10h und E5h-E6h 25 3.6 Steuereinschub und LCP-Bedieneinheit 26 3.6.1 Steuerfach – Übersicht 26 3.6.2 Steuerfach – Übersicht 26 3.6.3 Bedieneinheit (LCP) 29 3.6.4 LCP-Menü 31 4 Mechanische Installation 34 4.1 Gelieferte Teile 34 4.2 Teillieferung 35 4.5 Betriebsumgebung – Übersicht 35 4.5 Betriebsumgebung – Übersicht 35				
3.1 Bestimmungsgemäße Verwendung 14 3.2 Was ist ein schaltschrankbasierter Frequenzumrichter? 14 3.3 Position der Optionen in einem schaltschrankbasierten Frequenzumrichter 17 3.4 Typendaten 19 3.4.1 Ermittlung des Frequenzumrichters und seiner Optionen 19 3.4.2 Identifizierung der Baugröße 21 3.4.3 Bestimmung des Optionscodes 21 3.5 Nennleistungen und Abmessungen der Baugrößen D9h–D10h und E5h–E6h 25 3.6 Steuereinschub und LCP-Bedieneinheit 26 3.6.1 Steuerfach – Übersicht 26 3.6.2 Steuerfachtür 28 3.6.3 Bedieneinheit (LCP) 29 3.6.4 LCP-Menü 31 4 Mechanische Installation 34 4.1 Gelieferte Teile 34 4.2 Teilllieferung 34 4.3 Benötigte Werkzeuge 35 4.5 Betriebsumgebung 35 4.5.1 Betriebsumgebung 36 4.5.2 Gase in der Betriebsumgebung 36				
3.1 Bestimmungsgemäße Verwendung 14 3.2 Was ist ein schaltschrankbasierter Frequenzumrichter? 14 3.3 Position der Optionen in einem schaltschrankbasierten Frequenzumrichter 17 3.4 Typendaten 19 3.4.1 Ermittlung des Frequenzumrichters und seiner Optionen 19 3.4.2 Identifizierung der Baugröße 21 3.4.3 Bestimmung des Optionscodes 21 3.5 Nennleistungen und Abmessungen der Baugrößen D9h–D10h und E5h–E6h 25 3.6 Steuereinschub und LCP-Bedieneinheit 26 3.6.1 Steuerfach – Übersicht 26 3.6.2 Steuerfachtür 28 3.6.3 Bedieneinheit (LCP) 29 3.6.4 LCP-Menü 31 4 Mechanische Installation 34 4.1 Gelieferte Teile 34 4.2 Teilllieferung 34 4.3 Benötigte Werkzeuge 35 4.5 Betriebsumgebung 35 4.5.1 Betriebsumgebung 36 4.5.2 Gase in der Betriebsumgebung 36	3	Dro	duktübersicht	14
3.2 Was ist ein schaltschrankbasierter Frequenzumrichter? 14 3.3 Position der Optionen in einem schaltschrankbasierten Frequenzumrichter 17 3.4 Typendater 19 3.4.1 Ermittlung des Frequenzumrichters und seiner Optionen 19 3.4.2 Identifizierung der Baugröße 21 3.4.3 Bestimmung des Optionscodes 21 3.5 Nennleistungen und Abmessungen der Baugrößen D9h-D10h und E5h-E6h 25 3.6 Steuerfachtüb und LCP-Bedieneinheit 26 3.6.1 Steuerfachtür 28 3.6.2 Steuerfachtür 28 3.6.3 Bedieneinheit (LCP) 29 3.6.4 LCP-Menü 31 4 Mechanische Installation 34 4.1 Gelieferte Teile 34 4.2 Teillieferung 34 4.3 Benötigte Werkzeuge 35 4.5.1 Betriebsumgebung 35 4.5.1 Betriebsumgebung 36 4.5.1 Betriebsumgebung – Übersicht 35 4.5.2 Gase in der Betriebsumgebung 36 <td< td=""><td></td><td></td><td></td><td></td></td<>				
3.3 Position der Optionen in einem schaltschrankbasierten Frequenzumrichter 17 3.4 Typendaten 19 3.4.1 Ermittlung des Frequenzumrichters und seiner Optionen 19 3.4.2 Identifizierung der Baugröße 21 3.5 Nennleistungen und Abmessungen der Baugrößen D9h–D10h und E5h–E6h 25 3.6 Steuerischub und LCP-Bedieneinheit 26 3.6.1 Steuerfach - Übersicht 26 3.6.2 Steuerfachtür 28 3.6.3 Bedieneinheit (LCP) 29 3.6.4 LCP-Menü 31 4 Mechanische Installation 34 4.1 Gelieferte Teile 34 4.2 Teillieferung 34 4.3 Benötigte Werkzeuge 35 4.5 Betriebsumgebung 35 4.5.1 Betriebsumgebung – Übersicht 35 4.5.2 Gase in der Betriebsumgebung 36 4.5.3 Staub in der Betriebsumgebung 36 4.5.4 Explosionsgefährdete Bereiche 37 4.6 Installationsanforderungen 38 4.8 </td <td></td> <td></td> <td></td> <td></td>				
3.4 Typendater 19 3.4.1 Ermittlung des Frequenzumrichters und seiner Optionen 19 3.4.2 Identifizierung der Baugröße 21 3.4.3 Bestimmung des Optionscodes 21 3.5 Nennleistungen und Abmessungen der Baugrößen D9h–D10h und E5h–E6h 25 3.6 Steuerischub und LCP-Bedieneinheit 26 3.6.1 Steuerfach – Übersicht 26 3.6.2 Steuerfachtür 28 3.6.3 Bedieneinheit (LCP) 29 3.6.4 LCP-Menü 31 4 Mechanische Installation 34 4.1 Gelieferte Teile 34 4.2 Teillieferung 34 4.2 Teillieferung 35 4.4 Lagerung 35 4.5 Betriebsumgebung – Übersicht 35 4.5.1 Betriebsumgebung – Übersicht 35 4.5.2 Gase in der Betriebsumgebung 36 4.5.4 Explosionsgefährdete Bereiche 37 4.6 Installationsanforderungen 38 4.7 Kühlanforderungen 38 <td></td> <td></td> <td>······································</td> <td></td>			······································	
3.4.1 Ermittlung des Frequenzumrichters und seiner Optionen 19 3.4.2 Identifizierung der Baugröße 21 3.4.3 Bestimmung des Optionscodes 21 3.5 Nennleistungen und Abmessungen der Baugrößen D9h-D10h und E5h-E6h 25 3.6 Steuerfach - Übersicht 26 3.6.1 Steuerfach - Übersicht 26 3.6.2 Steuerfachtür 28 3.6.3 Bedieneinheit (LCP) 29 3.6.4 LCP-Menü 31 4 Mechanische Installation 34 4.1 Gelieferte Teile 34 4.2 Teillieferung 34 4.3 Benötigte Werkzeuge 35 4.4 Lagerung 35 4.5 Betriebsumgebung – Übersicht 35 4.5.1 Betriebsumgebung – Übersicht 35 4.5.2 Gase in der Betriebsumgebung 36 4.5.3 Staub in der Betriebsumgebung 36 4.5.4 Explosionsgefährdete Bereiche 37 4.6 Installationsanforderungen 38 4.8 Luftdurchsatz 38				
3.4.2 Identifizierung der Baugröße 21 3.4.3 Bestimmung des Optionscodes 21 3.5 Nennleistungen und Abmessungen der Baugrößen D9h–D10h und E5h–E6h 25 3.6 Steuerischub und LCP-Bedieneinheit 26 3.6.1 Steuerfach – Übersicht 26 3.6.2 Steuerfachtür 28 3.6.3 Bedieneinheit (LCP) 29 3.6.4 LCP-Menü 31 4 Mechanische Installation 34 4.1 Gelieferte Teile 34 4.2 Teillieferung 34 4.3 Benötigte Werkzeuge 35 4.4 Lagerung 35 4.5 Betriebsumgebung 35 4.5.1 Betriebsumgebung – Übersicht 35 4.5.2 Gase in der Betriebsumgebung 36 4.5.3 Staub in der Betriebsumgebung 36 4.5.4 Explosionsgefährdete Bereiche 37 4.6 Installationsanforderungen 38 4.8 Luftdurchsatz 38		3.4		
3.4.3 Bestimmung des Optionscodes 21 3.5 Nennleistungen und Abmessungen der Baugrößen D9h-D10h und E5h-E6h 25 3.6 Steuereinschub und LCP-Bedieneinheit 26 3.6.1 Steuerfach - Übersicht 26 3.6.2 Steuerfachtür 28 3.6.3 Bedieneinheit (LCP) 29 3.6.4 LCP-Menü 31 4 Mechanische Installation 34 4.1 Gelieferte Teile 34 4.2 Teillieferung 34 4.3 Benötigte Werkzeuge 35 4.4 Lagerung 35 4.5 Betriebsumgebung 35 4.5.1 Betriebsumgebung – Übersicht 35 4.5.2 Gase in der Betriebsumgebung 36 4.5.3 Staub in der Betriebsumgebung 36 4.5.4 Explosionsgefährdete Bereiche 37 4.6 Installationsanforderungen 38 4.8 Luftdurchsatz 38				
3.5 Nennleistungen und Abmessungen der Baugrößen D9h–D10h und E5h–E6h 25 3.6 Steuereinschub und LCP-Bedieneinheit 26 3.6.1 Steuerfachtür 28 3.6.2 Steuerfachtür 29 3.6.4 LCP-Menü 31 4 Mechanische Installation 34 4.1 Gelieferte Teile 34 4.2 Teillieferung 34 4.3 Benötigte Werkzeuge 35 4.4 Lagerung 35 4.5 Betriebsumgebung 35 4.5.1 Betriebsumgebung – Übersicht 35 4.5.2 Gase in der Betriebsumgebung 36 4.5.3 Staub in der Betriebsumgebung 36 4.5.4 Explosionsgefährdete Bereiche 37 4.6 Installationsanforderungen 37 4.7 Kühlanforderungen 38 4.8 Luftdurchsatz 38				
3.6 Steuerienschub und LCP-Bedieneinheit 26 3.6.1 Steuerfach - Übersicht 26 3.6.2 Steuerfachtür 28 3.6.3 Bedieneinheit (LCP) 29 3.6.4 LCP-Menü 31 4 Mechanische Installation 34 4.1 Gelieferte Teile 34 4.2 Teillieferung 34 4.3 Benötigte Werkzeuge 35 4.4 Lagerung 35 4.5 Betriebsumgebung 35 4.5.1 Betriebsumgebung – Übersicht 35 4.5.1 Betriebsumgebung – Übersicht 35 4.5.2 Gase in der Betriebsumgebung 36 4.5.3 Staub in der Betriebsumgebung 36 4.5.4 Explosionsgefährdete Bereiche 37 4.6 Installationsanforderungen 37 4.7 Kühlanforderungen 38 4.8 Luftdurchsatz 38		 3 5		
3.6.1 Steuerfach – Übersicht 26 3.6.2 Steuerfachtür 28 3.6.3 Bedieneinheit (LCP) 29 3.6.4 LCP-Menü 31 4 Mechanische Installation 34 4.1 Gelieferte Teile 34 4.2 Teillieferung 34 4.3 Benötigte Werkzeuge 35 4.4 Lagerung 35 4.5 Betriebsumgebung 35 4.5.1 Betriebsumgebung – Übersicht 35 4.5.2 Gase in der Betriebsumgebung 36 4.5.3 Staub in der Betriebsumgebung 36 4.5.4 Explosionsgefährdete Bereiche 37 4.6 Installationsanforderungen 37 4.7 Kühlanforderungen 38 4.8 Luftdurchsatz 38				
3.6.2 Steuerfachtür 28 3.6.3 Bedieneinheit (LCP) 29 3.6.4 LCP-Menü 31 4 Mechanische Installation 34 4.1 Gelieferte Teile 34 4.2 Teillieferung 34 4.3 Benötigte Werkzeuge 35 4.4 Lagerung 35 4.5 Betriebsumgebung 35 4.5.1 Betriebsumgebung – Übersicht 35 4.5.2 Gase in der Betriebsumgebung 36 4.5.3 Staub in der Betriebsumgebung 36 4.5.4 Explosionsgefährdete Bereiche 37 4.6 Installationsanforderungen 37 4.7 Kühlanforderungen 38 4.8 Luftdurchsatz 38				
3.6.3 Bedieneinheit (LCP) 29 3.6.4 LCP-Menü 31 4 Mechanische Installation 34 4.1 Gelieferte Teile 34 4.2 Teillieferung 34 4.3 Benötigte Werkzeuge 35 4.4 Lagerung 35 4.5 Betriebsumgebung – Übersicht 35 4.5.1 Betriebsumgebung – Übersicht 35 4.5.2 Gase in der Betriebsumgebung 36 4.5.3 Staub in der Betriebsumgebung 36 4.5.4 Explosionsgefährdete Bereiche 37 4.6 Installationsanforderungen 37 4.7 Kühlanforderungen 38 4.8 Luftdurchsatz 38				
3.6.4 LCP-Menü 31 4 Mechanische Installation 34 4.1 Gelieferte Teile 34 4.2 Teillieferung 34 4.3 Benötigte Werkzeuge 35 4.4 Lagerung 35 4.5 Betriebsumgebung 35 4.5.1 Betriebsumgebung – Übersicht 35 4.5.2 Gase in der Betriebsumgebung 36 4.5.3 Staub in der Betriebsumgebung 36 4.5.4 Explosionsgefährdete Bereiche 37 4.6 Installationsanforderungen 37 4.7 Kühlanforderungen 38 4.8 Luftdurchsatz 38				
4.1 Gelieferte Teile 34 4.2 Teillieferung 34 4.3 Benötigte Werkzeuge 35 4.4 Lagerung 35 4.5 Betriebsumgebung 35 4.5.1 Betriebsumgebung – Übersicht 35 4.5.2 Gase in der Betriebsumgebung 36 4.5.3 Staub in der Betriebsumgebung 36 4.5.4 Explosionsgefährdete Bereiche 37 4.6 Installationsanforderungen 37 4.7 Kühlanforderungen 38 4.8 Luftdurchsatz 38				
4.1 Gelieferte Teile 34 4.2 Teillieferung 34 4.3 Benötigte Werkzeuge 35 4.4 Lagerung 35 4.5 Betriebsumgebung 35 4.5.1 Betriebsumgebung – Übersicht 35 4.5.2 Gase in der Betriebsumgebung 36 4.5.3 Staub in der Betriebsumgebung 36 4.5.4 Explosionsgefährdete Bereiche 37 4.6 Installationsanforderungen 37 4.7 Kühlanforderungen 38 4.8 Luftdurchsatz 38	1	Ma	chanische Installation	24
4.2 Teillieferung 34 4.3 Benötigte Werkzeuge 35 4.4 Lagerung 35 4.5 Betriebsumgebung 35 4.5.1 Betriebsumgebung – Übersicht 35 4.5.2 Gase in der Betriebsumgebung 36 4.5.3 Staub in der Betriebsumgebung 36 4.5.4 Explosionsgefährdete Bereiche 37 4.6 Installationsanforderungen 37 4.7 Kühlanforderungen 38 4.8 Luftdurchsatz 38	-			
4.3 Benötigte Werkzeuge 35 4.4 Lagerung 35 4.5 Betriebsumgebung 35 4.5.1 Betriebsumgebung – Übersicht 35 4.5.2 Gase in der Betriebsumgebung 36 4.5.3 Staub in der Betriebsumgebung 36 4.5.4 Explosionsgefährdete Bereiche 37 4.6 Installationsanforderungen 37 4.7 Kühlanforderungen 38 4.8 Luftdurchsatz 38				
4.4 Lagerung 35 4.5 Betriebsumgebung 35 4.5.1 Betriebsumgebung – Übersicht 35 4.5.2 Gase in der Betriebsumgebung 36 4.5.3 Staub in der Betriebsumgebung 36 4.5.4 Explosionsgefährdete Bereiche 37 4.6 Installationsanforderungen 37 4.7 Kühlanforderungen 38 4.8 Luftdurchsatz 38				
4.5 Betriebsumgebung 35 4.5.1 Betriebsumgebung – Übersicht 35 4.5.2 Gase in der Betriebsumgebung 36 4.5.3 Staub in der Betriebsumgebung 36 4.5.4 Explosionsgefährdete Bereiche 37 4.6 Installationsanforderungen 37 4.7 Kühlanforderungen 38 4.8 Luftdurchsatz 38				
4.5.1 Betriebsumgebung – Übersicht 35 4.5.2 Gase in der Betriebsumgebung 36 4.5.3 Staub in der Betriebsumgebung 36 4.5.4 Explosionsgefährdete Bereiche 37 4.6 Installationsanforderungen 37 4.7 Kühlanforderungen 38 4.8 Luftdurchsatz 38				
4.5.2 Gase in der Betriebsumgebung 36 4.5.3 Staub in der Betriebsumgebung 36 4.5.4 Explosionsgefährdete Bereiche 37 4.6 Installationsanforderungen 37 4.7 Kühlanforderungen 38 4.8 Luftdurchsatz 38		т.Э		
4.5.3 Staub in der Betriebsumgebung 36 4.5.4 Explosionsgefährdete Bereiche 37 4.6 Installationsanforderungen 37 4.7 Kühlanforderungen 38 4.8 Luftdurchsatz 38				
4.5.4Explosionsgefährdete Bereiche374.6Installationsanforderungen374.7Kühlanforderungen384.8Luftdurchsatz38				
4.6Installationsanforderungen374.7Kühlanforderungen384.8Luftdurchsatz38				
4.7 Kühlanforderungen384.8 Luftdurchsatz38		4.6		
4.8 Luftdurchsatz 38				
				38
				40

	sanleitung VLT® AQUA Drive FC 202
--	-------------------------------------

	L	_	14
n	n	а	IΤ

4.10		41		
4.11	Installation des schaltschrankbasierten Frequenzumrichters	43		
	4.11.1 Herstellen einer Kabeleinführung	43		
	4.11.2 Installation des Frequenzumrichters mit Rückkanalkühloption	42		
	4.11.3 Befestigung des Schaltschranks am Boden	44		
Elel	ktrische Installation	46		
5.1	Sicherheitshinweise	46		
5.2	EMV-gerechte Installation	47		
5.3	Anschluss diagramm für die schaltschrankbasierten Frequenzum richter D9h und D10	0h 50		
5.4	Anschluss dia gramm für die schaltschrankbasierten Frequenzumrichter E5h und E6h			
5.5	Anschlussplan-Querverweise	52		
5.6	Kabelbäume in Teillieferung	53		
	5.6.1 Anschluss der Kabelbäume	53		
	5.6.2 D10h-Kabelbaum	54		
	5.6.3 E5h-Kabelbaum	58		
	5.6.4 E6h-Kabelbaum	64		
5.7	Verkabelung des Steuerfachs	70		
	5.7.1 Sicherheitsmaßnahmen	70		
	5.7.2 Ansicht des Steuerfach-Innenraums	71		
	5.7.3 Steuerklemmen	72		
	5.7.4 Relaisklemmen	73		
	5.7.5 Optionskartenklemmen	73		
	5.7.6 Übersicht über die Verkabelung von Optionen	76		
5.8	Anschließen von Motor-, Netz- und Erdungskabeln	84		
	5.8.1 Berücksichtigungen bei der Leistungsverkabelung und Erdung	84		
	5.8.2 Netzanschluss	86		
	5.8.3 Anschließen des Frequenzumrichtermoduls am Motor	90		
	5.8.4 Anschließen des Sinusfilters am Motor	92		
	5.8.5 Anschließen des dU/dt-Filters am Motor	94		
	5.8.6 Erdungsanschluss	96		
5.9	Installation von vorgeschalteten Sicherungen			
	5.9.1 Empfohlene Sicherungsnennwerte für die IEC-Installation	97		
	5.9.2 Empfohlene Sicherungsnennwerte für die UL-Installation	98		
5.10				
5.11				
5.12	Einrichten einer RS485-Telegrammkommunikation	100		
5.13	Konfiguration des passiven Oberschwingungsfilters (PHF)	101		
5.14	Konfiguration der dU/dt-Filter	101		
5.15	Konfiguration des Sinusfilters	101		
5.16	(MCCB) Lasttrennschalter-Konfiguration	102		
5.17	Verdrahtung der Funktion Safe Torque Off (STO)	102		

4 | Danfoss A/S © 2018.10 AQ262141056213de-000101 /

6	Che	eckliste	vor der Inbetriebnahme	103
7	Inb	etriebn	nahme	105
	7.1	Netzve	rsorgung am Frequenzumrichter anlegen	105
	7.2	Prograr	mmieren des Frequenzumrichters	105
		7.2.1	Parameter über sicht	105
		7.2.2	Parameternavigation	106
		7.2.3	Beispiel für die Programmierung für eine Anwendung mit Regelung ohne Rückführung	106
		7.2.4	Eingeben von Systeminformationen	108
		7.2.5	Konfiguration der Automatischen Energieoptimierung	109
		7.2.6	Konfiguration der Automatischen Motoranpassung	109
	7.3	Prüfung	g vor dem Systemstart	110
		7.3.1	Überprüfung der Motordrehung	110
	7.4	Parame	etereinstellungen	110
		7.4.1	Übersicht über die Parametereinstellungen	110
8	Bei	spiele f	ür Anschlusskonfigurationen	111
	8.1	Anwen	dungsbeispiele	111
		8.1.1	Anschlusskonfiguration für eine automatische Motoranpassung (AMA)	111
		8.1.2	Anschlusskonfiguration für eine automatische Motoranpassung (AMA) ohne Kl. 27	112
		8.1.3	Anschlusskonfiguration: Drehzahl	112
		8.1.4	Anschlusskonfiguration: Feedback	115
		8.1.5	Anschlusskonfiguration: Start/Stopp	117
		8.1.6	Anschlusskonfiguration: Start/Stopp	119
		8.1.7	Anschlusskonfiguration: Externe Alarmquittierung	121
		8.1.8	Anschlusskonfiguration: RS485	122
		8.1.9	Anschlusskonfiguration: Motorthermistor	122
		8.1.10	Verdrahtung für Rückspeisung	123
		8.1.11	Anschlusskonfiguration für eine Relaiskonfiguration mit Smart Logic Control	124
		8.1.12	Anschlusskonfiguration für eine Tauchpumpe	124
		8.1.13	Anschlusskonfiguration für einen Kaskadenregler	127
		8.1.14	Anschlusskonfiguration für eine Pumpe mit konstanter/variabler Drehzahl	129
		8.1.15	Anschlusskonfiguration für Führungspumpen-Wechsel	130
9	Wa	rtung, l	Diagnose und Fehlersuche und -behebung	131
	9.1	Wartun	g und Service	131
	9.2	9.2 Statusmeldungen		
		9.2.1	Übersicht über Statusmeldungen	131
		9.2.2	Statusmeldungen – Betriebsart	132
		9.2.3	Zustandsmeldungen – Sollwertvorgabe	132
		9.2.4	Statusmeldungen - Betriebsstatus	132
	9.3	Warnur	ngen und Alarmmeldungen	135

Danfoss A/S © 2018.10 AQ262141056213de-000101 / | 5

Bedienungsanleitung | VLT® AQUA Drive FC 202

Inhalt

9.4	Fehlerbe	hebung	160
Tecl	hnische	. Daten	164
10.1	Elektrisc	he Daten	164
	10.1.1	Elektrische Daten, 380-480 V AC	164
	10.1.2	Elektrische Daten, 525-690 V AC	169
10.2	Netzvers	sorgung	174
10.3	Motorausgang und Motordaten		
	10.3.1	Motorausgang (U, V, W)	175
	10.3.2	Drehmomentkennlinien	175
10.4	Umgebu	ıngsbedingungen	175
10.5			176
10.6	Steuerei	ngang/-ausgang und Steuerdaten	176
	10.6.1	Steuerkarte, USB serielle Schnittstelle	176
	10.6.2	STO-Klemme XD2.19 (Klemme XD2.19 hat festgelegte PNP-Logik)	176
	10.6.3	Steuerkarte, 24-V-DC-Ausgang	177
	10.6.4	Steuerkarte, +10 V DC Ausgang	177
	10.6.5	Digitalausgänge	177
	10.6.6	Digitaleingänge	177
	10.6.7	Puls/Drehgeber-Eingänge	178
	10.6.8	Steuerungseigenschaften	178
	10.6.9	Relaisausgänge	179
	10.6.10	Analogausgang	179
	10.6.11	Steuerkarte, RS485 serielle Schnittstelle	180
	10.6.12	Steuerkartenleistung	180
	10.6.13	Analogeingänge	180
10.7	Filterspezifikationen		181
	10.7.1	Spezifikationen für passive Oberschwingungsfilter	181
	10.7.2	Netzdrosselspezifikationen	181
	10.7.3	Spezifikationen der dU/dt-Filter	182
	10.7.4	Spezifikationen für Sinusfilter	183
10.8	Sicherun	ngen und Trennschalter	184
	10.8.1	Sicherungstypen	184
	10.8.2	Schaltschranksicherungen	185
	10.8.3	Schmelztrennschalter	186
	10.8.4	Trennschalter	187
	10.8.5	Schützsicherungen	188
	10.8.6	Kompaktleistungsschalter	189
10.9	Gehäuse	eabmessungen	191
	10.9.1	Sockelabmessungen	191
	10.9.2	Abmessungen des schaltschrankbasierten Frequenzumrichters D9h	191
	10.9.3	Abmessungen des schaltschrankbasierten Frequenzumrichters D10h	192

6 | Danfoss A/S © 2018.10 AQ262141056213de-000101 /

Bedienungsanleitung | VLT® AQUA Drive FC 202

1	n	h	а	lt

	10.9.4	Abmessungen des schaltschrankbasierten Frequenzumrichters E5h	193
	10.9.5	Abmessungen des schaltschrankbasierten Frequenzumrichters E6h	194
10.1	0 Luftzirk	ulation im Gehäuse	195
10.1	1 Nenndr	195	
11 Anl	hang		196
11.1	Konven	itionen	196
11.2	Abkürzı	ungen	196
11.3	Werksei	198	
11.4	Erforde	199	
11.5	Blocksc	haltbilder	200
11.6	Verlustl	203	
	11.6.1	Verlustleistungen an Schützen	203
	11.6.2	Verlustleistungen an Sicherungstrennschaltern	204
	11.6.3	Verlustleistungen an Trennschaltern	205
	11.6.4	Verlustleistungen an MCCB	206
	11.6.5	Verlustleistungen an passiven Oberschwingungsfiltern	207
	11.6.6	Verlustleistungen an dU/dt-Filtern	208
	11.6.7	Verlustleistungen an Sinusfiltern	209

1 Einführung

1.1 Zusätzliche Materialien

Es stehen weitere Ressourcen zur Verfügung, die Ihnen helfen, erweiterte Funktionen und Programmierungen der Umrichter zu verstehen.

- Das Programmierhandbuch enthält umfassendere Informationen über das Arbeiten mit Parametern sowie viele Anwendungsbeispiele.
- Das Projektierungshandbuch enthält umfassende Informationen zu Möglichkeiten und Funktionen sowie zur Auslegung von Steuerungssystemen für Motoren.
- Die Bedienungsanleitung zu Safe Torque Off enthält detaillierte Spezifikationen, Anforderungen und Installationsanweisungen zur Funktion Safe Torque Off.
- Zusätzliche Veröffentlichungen und Handbücher sind bei Danfoss erhältlich.

Siehe https://www.danfoss.com/en/search/?filter=type%3Adocumentation.

1.2 Handbuchversion

Dieses Handbuch wird regelmäßig geprüft und aktualisiert. Verbesserungsvorschläge sind jederzeit willkommen.

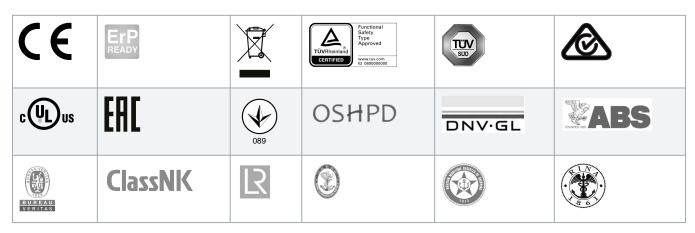

Die Originalsprache dieses Handbuchs ist Englisch.

Tabelle 1: Handbuch- und Softwareversion

Version	Anmerkungen	Softwareversion
MG80H1	Erste Version	3.31

1.3 Zulassungen und Zertifizierungen

Die folgende Liste ist eine Auswahl von möglichen Typzulassungen und Zertifizierungen für Danfoss-Frequenzumrichter:

Die jeweiligen Zulassungen und Zertifizierungen für den schaltschrankbasierten Frequenzumrichter befinden sich auf dem Typenschild des Frequenzumrichters. Weitere Informationen erhalten Sie von Ihrer örtlichen Danfoss-Vertretung oder einem Partner.

8 | Danfoss A/S © 2018.10 AQ262141056213de-000101 / 130R0882

Einführung

Anforderung bezüglich thermischer Sicherung

Der schaltschrankbasierte Frequenzumrichter erfüllt die Anforderungen der UL 61800-5-1 bezüglich der thermischen Sicherung. Der schaltschrankbasierte Frequenzumrichter ist gemäß den Standards UL508A und CSA 14 UL-gelistet. Weitere Informationen zu Anforderungen der UL 508C bezüglich der thermischen Sicherung finden Sie im Abschnitt "Thermischer Motorschutz" im produktspezifischen Projektierungshandbuch.

HINWEIS

AUSGANGSFREQUENZGRENZE

Aufgrund der Exportkontrollverordnungen ist die Ausgangsfrequenz des Frequenzumrichters auf 590 Hz begrenzt. Wenden Sie sich bei Anforderungen über 590 Hz an Danfoss.

Übereinstimmung mit ADN

Informationen zur Übereinstimmung mit dem Europäischen Übereinkommen über die internationale Beförderung gefährlicher Güter auf Binnenwasserstraßen (ADN) finden Sie im Abschnitt ADN-konforme Installation im produktspezifischen Projektierungshandbuch.

1.4 Entsorgung

Sie dürfen elektrische Geräte und Geräte mit elektrischen Komponenten nicht zusammen mit normalem Hausmüll entsorgen. Sammeln Sie diese separat gemäß den geltenden örtlichen Bestimmungen.

2 Sicherheit

2.1 Sicherheitssymbole

In diesem Handbuch werden folgende Symbole verwendet:

▲ GEFAHR ▲

Kennzeichnet eine gefährliche Situation, die, wenn sie nicht vermieden wird, zum Tod oder zu schweren Verletzungen führen wird!

⚠ WARNUNG ⚠

Kennzeichnet eine gefährliche Situation, die, wenn sie nicht vermieden wird, zum Tod oder zu schweren Verletzungen führen kann!

▲ VORSICHT **▲**

Kennzeichnet eine gefährliche Situation, die, wenn sie nicht vermieden wird, zu geringfügigen bis mittelschweren Verletzungen führen kann!

HINWEIS

Kennzeichnet eine Sachbeschädigungsmeldung.

2.2 Qualifiziertes Personal

Zur Gewährleistung eines problemlosen und sicheren Betriebs dieses Geräts darf dieses ausschließlich von Personen mit nachgewiesener Qualifikation zusammengebaut, installiert, programmiert, in Betrieb genommen, gewartet und außer Betrieb genommen werden.

Personen mit nachgewiesener Qualifikation

- sind Elektrofachkräfte, die entsprechende Erfahrung in der Bedienung von Geräten, Systemen, Maschinen und Anlagen gemäß den geltenden Gesetzen und Richtlinien zur Sicherheitstechnik haben.
- kennen die grundlegenden Bestimmungen bezüglich Gesundheit und Sicherheit/Unfallschutz.
- haben die Sicherheitshinweise in allen dem Gerät beiliegenden Handbüchern sowie die Anweisungen in der Bedienungsanleitung des Geräts gelesen und verstanden.
- verfügen über gute Kenntnisse der Fachgrund- und Produktnormen für die jeweilige Anwendung.

2.3 Sicherheitsmaßnahmen

⚠ WARNUNG ⚠

MANGELNDES SICHERHEITSBEWUSSTSEIN

Dieses Dokument enthält wichtige Informationen zur Vermeidung von Körperverletzung und Schäden am Gerät oder Ihrem System. Die Nichtbeachtung kann zum Tod, zu schweren Verletzungen oder schweren Schäden am Gerät führen!

- Stellen Sie sicher, dass Sie die Gefahren und Sicherheitsmaßnahmen Ihrer Anwendung vollständig verstehen.

▲ WARNUNG **▲**

ENTLADEZEIT

Der Frequenzumrichter enthält Zwischenkreiskondensatoren und, falls Eingangsfilteroptionen vorhanden sind, zusätzliche Kondensatoren und Drosseln. Diese Komponenten können auch bei abgeschaltetem Frequenzumrichter geladen sein. Auch wenn die Warn-LED nicht leuchten, kann Hochspannung vorliegen.

Das Nichteinhalten der vorgesehenen Entladungszeit nach dem Trennen der Spannungsversorgung vor Wartungs- oder Reparaturarbeiten kann zu schweren oder tödlichen Verletzungen führen.

- Stoppen Sie den Motor.
- Trennen Sie das Versorgungsnetz, Permanentmagnet-Motoren und externe Zwischenkreisversorgungen, einschließlich externer Batterie-, USV- und Zwischenkreisverbindungen zu anderen Frequenzumrichtern.
- Warten Sie, damit die Kondensatoren vollständig entladen können. Die notwendige Wartezeit finden Sie in der Tabelle "Entladezeit" sowie auf dem Typenschild an der Oberseite des Frequenzumrichters.
- Verwenden Sie vor der Durchführung von Wartungs- oder Reparaturarbeiten ein geeignetes Spannungsmessgerät, um sicherzustellen, dass die Kondensatoren vollständig entladen sind.

Tabelle 2: Entladezeit

Spannung [V]	Mindestwartezeit (Minuten)		
	20	40	
380–480 110–315 kW (150–450 HP)		355–560 kW (500–750 HP)	
525–690	110-400 kW (125-400 HP)	450–800 kW (450–950 HP)	

▲ WARNUNG **▲**

HOCHSPANNUNG

Bei Anschluss an das Versorgungsnetz führen Frequenzumrichter Hochspannung. Erfolgen Installation, Inbetriebnahme und Wartung nicht durch qualifiziertes Personal, kann dies zu schweren Verletzungen oder sogar zum Tod führen!

- Installation, Inbetriebnahme und Wartung dürfen ausschließlich von qualifiziertem Personal durchgeführt werden.

⚠ WARNUNG ⚠

UNERWARTETER ANLAUF

Wenn der Frequenzumrichter an das Versorgungsnetz, die DC-Versorgung oder die Zwischenkreiskopplung angeschlossen ist, kann der Motor jederzeit anlaufen, was zum Tod oder zu schweren Verletzungen sowie zu Geräte- oder Sachschäden führen kann! Der Motor kann über einen externen Schalter, einen Feldbus-Befehl, ein Sollwerteingangssignal, über einen Tastendruck an LCP oder LOP, eine Fernbedienung per MCT 10 Konfigurationssoftware oder nach einem quittierten Fehlerzustand anlaufen.

- Drücken Sie vor der Programmierung von Parametern die Taste [Off] am LCP.
- Ist ein unerwarteter Anlauf des Motors gemäß den Bestimmungen zur Personensicherheit unzulässig, trennen Sie den Frequenzumrichter vom Netz.
- Prüfen Sie, ob der Frequenzumrichter, der Motor und alle angetriebenen Geräte betriebsbereit sind.

▲ WARNUNG **▲**

GEFAHR DURCH ABLEITSTROM

Ableitströme überschreiten 3,5 mA. Eine nicht ordnungsgemäße Erdung des Frequenzumrichters kann zum Tod oder zu schweren Verletzungen führen!

- Stellen Sie die ordnungsgemäße Erdung der Anlage durch einen zugelassenen Elektroinstallateur sicher.

A WARNUNG A

DREHENDE WELLEN

Ein Kontakt mit drehenden Wellen und elektrischen Betriebsmitteln kann zum Tod oder zu schweren Verletzungen führen!

- Stellen Sie sicher, dass Installations-, Inbetriebnahme- und Wartungsarbeiten ausschließlich von geschultem und qualifiziertem Personal durchgeführt werden.
- Alle Elektroarbeiten müssen den VDE-Vorschriften und anderen lokal geltenden Elektroinstallationsvorschriften entsprechen.
- Befolgen Sie die Verfahren in diesem Handbuch.

▲ VORSICHT **▲**

HEISSE OBERFLÄCHEN

Der Frequenzumrichter enthält Metallkomponenten, die auch nach dem Ausschalten des Frequenzumrichters heiß sind. Die Nichtbeachtung des Symbols für hohe Temperaturen (gelbes Dreieck) auf dem Frequenzumrichter kann schwere Verbrennungen zur Folge haben.

- Beachten Sie, dass interne Komponenten wie Sammelschienen auch nach dem Ausschalten des Frequenzumrichter extrem heiß sein können.
- Berühren Sie keine Außenflächen, die durch das Hochtemperatursymbol (gelbes Dreieck) gekennzeichnet sind. Diese Flächen sind während des Betriebs des Frequenzumrichters und unmittelbar nach dessen Abschaltung heiß.

VORSICHT A

GEFAHR BEI EINEM INTERNEN FEHLER

Ein interner Fehler im Frequenzumrichter kann zu schweren Verletzungen führen, wenn der Frequenzumrichter nicht ordnungsgemäß geschlossen wird.

Stellen Sie vor dem Anlegen von Netzspannung sicher, dass alle Sicherheitsabdeckungen angebracht und ordnungsgemäß befestigt sind.

3 Produktübersicht

3.1 Bestimmungsgemäße Verwendung

HINWEIS

AUSGANGSFREQUENZGRENZE

Aufgrund der Exportkontrollverordnungen ist die Ausgangsfrequenz des Frequenzumrichters auf 590 Hz begrenzt. Wenden Sie sich bei Anforderungen über 590 Hz an Danfoss.

Ein schaltschrankbasierter Frequenzumrichter ist ein elektronischer Motorregler, der eine eingangsseitige Wechselspannung fester Frequenz in eine variable Ausgangsspannung mit anpassbarer Frequenz umwandelt. So steuern Frequenz und Spannung des Ausgangsstroms die Motordrehzahl und das Motordrehmoment. Je nach Konfiguration lässt sich der Frequenzumrichter als Standalone-Anwendung oder als Teil eines größeren Systems oder einer größeren Anlage einsetzen. Der schaltschrankbasierte Frequenzumrichter ist für Folgendes bestimmt:

- · Regelung der Motordrehzahl als Reaktion auf die Systemrückführung oder auf Remote-Befehle von externen Reglern.
- Bereitstellung von Motorüberlastschutz
- Überwachung von System- und Motorzustand
- Reduzieren Sie Oberschwingungen und erhöhen Sie den Leistungsfaktor mit dem optionalen passiven Oberschwingungsfilter oder einer Netzdrossel.
- · Reduzieren Sie Motorgeräusche und schützen Sie die Motorisolierung mit den optionalen Ausgangsfiltern.
- Reduzieren Sie Lagerstrom und Wellenspannung mit dem optionalen Gleichtaktfilter.
- Reduzieren Sie hochfrequente, elektromagnetische Störungen in den Motorkabeln mit dem optionalen dU/dt-Filter.
- Erzeugen Sie eine Sinusspannung mit optionalem Sinusfilter.

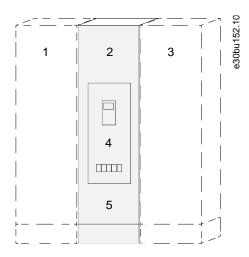
Der schaltschrankbasierte Frequenzumrichter ist für die Verwendung in Wohn-, Geschäfts- und Gewerbebereichen unter Berücksichtigung örtlich geltender Gesetze und Standards ausgelegt. Verwenden Sie diesen Frequenzumrichter nicht in Anwendungen, die nicht mit den angegebenen Betriebsbedingungen und -umgebungen konform sind.

HINWEIS

FUNKSTÖRUNGEN

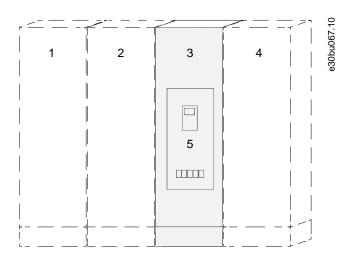
Das Produkt kann in Wohngegenden Funkstörungen verursachen.

- Ergreifen Sie zusätzliche Abhilfemaßnahmen.


3.2 Was ist ein schaltschrankbasierter Frequenzumrichter?

Der schaltschrankbasierte Frequenzumrichter verfügt über einen Schaltschrank der Schutzart IP21/54 (NEMA 1/12), das einen Frequenzumrichter mit der Schutzart IP20 (Protected Chassis) umgibt. Diese Kombination bildet die Basis des Systems. Es stehen 4 schaltschrankbasierte Frequenzumrichtermodelle mit verschiedenen Nennleistungen zur Auswahl.

- D9h-Modell: 110–160 kW (125–250 HP)
- D10h-Modell: 200–400 kW (250–450 HP)
- E5h-Modell: 355–630 kW (450–650 HP)
- E6h-Modell: 500–800 kW (650–950 HP)

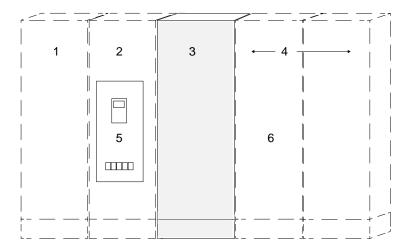

Der schaltschrankbasierte Frequenzumrichter ist mit verschiedenen Leistungsoptionen und Eingangs- und Ausgangsfiltern erhältlich, wodurch werkseitig ein kundenspezifischer Frequenzumrichter konfigurierbar ist. Für einige Optionen und Filter sind zusätzliche Schaltschränke erforderlich, die links oder rechts seitlich an den Frequenzumrichter-Schaltschrank angebracht werden. Diese optionalen Schaltschränke sind als gestrichelte Linien abgebildet, während der Frequenzumrichter-Schaltschrank grau hinterlegt ist.

1	Eingangsfilterschrank (passiver Oberschwingungsfilter oder	2	Frequenzumrichter-Schaltschrank
	Netzdrossel)		Steuerfach
3	Sinusfilter-Schrank		
5	Eingangsleistungsoptionen (1)		

Bei der Baugröße D9h ist kein Elngangsleistungs-Optionsschrank erforderlich – die Eingangsleistungsoptionen werden im Frequenzumrichter-Schaltschrank untergebracht.

Abbildung 1: Mögliche Konfigurationen für einen schaltschrankbasierten Frequenzumrichter D9h

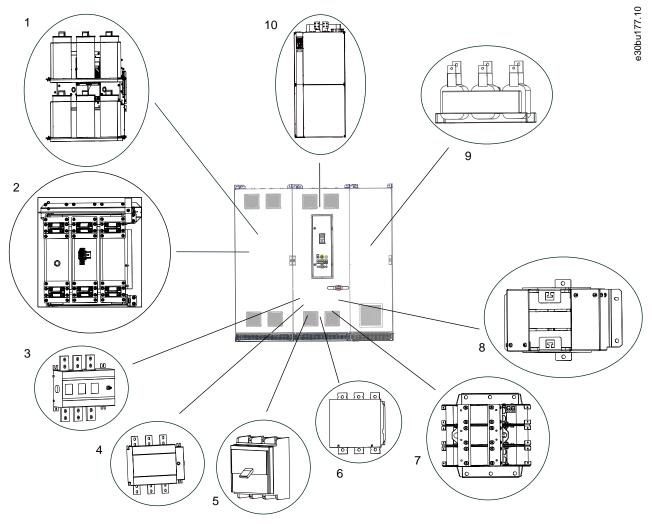
- Eingangsfilterschrank (passiver Oberschwingungsfilter oder Netzdrossel)
- **3** Frequenzumrichter-Schaltschrank


- 2 Eingangsleistungs-Optionsschrank (1)
- 4 Sinusfilterschrank

5	Steuerfach	
---	------------	--

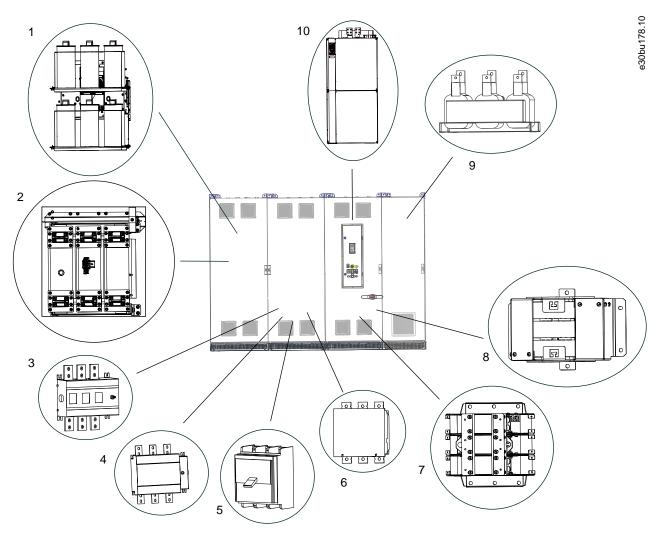
e30bu068.10

Abbildung 2: Mögliche Konfigurationen für einen schaltschrankbasierten Frequenzumrichter D10h


1	Eingangsfilterschrank (passiver Oberschwingungsfilter oder	2	Eingangsleistungs-Optionsschrank
	Netzdrossel)	4	Sinusfilterschrank
3	Frequenzumrichter-Schaltschrank	6 dU/dt-Filterschrank	
5	Steuerfach		

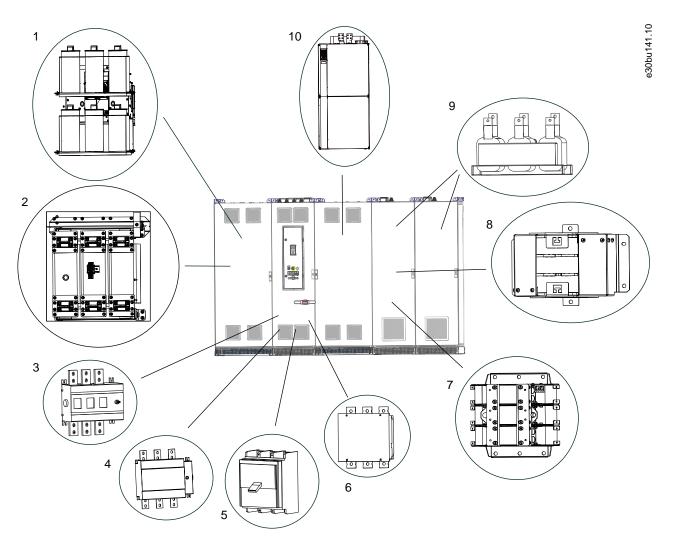
 $Abbildung \ \ 3: \quad M\"{o}gliche \ Konfigurationen \ f\"{u}r \ einen \ schaltschrankbasierten \ Frequenzumrichter \ E5h \ oder \ E6h$

¹ Bei Bestellung von mehr als einer Eingangsleistungsoption wird für den schaltschrankbasierten Frequenzumrichter der Baugröße D10h ein Eingangsleistungs-Optionsschrank benötigt. Andernfalls wird die einzelne Eingangsleistungsoption unter dem Steuerfach im Frequenzumrichter-Schaltschrank platziert.


3.3 Position der Optionen in einem schaltschrankbasierten Frequenzumrichter

1 Passiver Oberschwingungsfilter (PHF)	2 Netzdrossel
3 Trennschalter	4 Sicherungstrennschalter
5 Kompaktleistungsschalter (MCCB)	6 Schütz
7 dU/dt-Filter	8 Gleichtaktfilter
9 Sinusfilter	10 Frequenzumrichtermodul (verschiedene Nennleistungen)

Abbildung 4: Abbildung eines D9h-Schaltschranks und den Positionen der verfügbaren Optionen



1 Passiver Oberschwingungsfilter (PHF)	2 Netzdrossel
3 Trennschalter	4 Sicherungstrennschalter
5 Kompaktleistungsschalter (MCCB)	6 Schütz
7 dU/dt-Filter	8 Gleichtaktfilter
9 Sinusfilter	10 Frequenzumrichtermodul (verschiedene Nennleistungen)

Abbildung 5: Abbildung eines D10h-Schaltschranks und den Positionen der verfügbaren Optionen

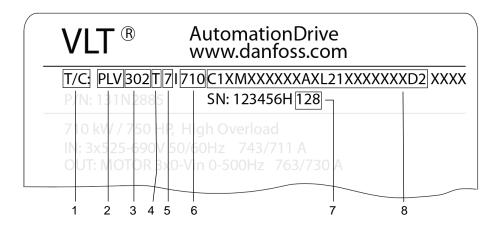
1 Passiver Oberschwingungsfilter (PHF)	2 Netzdrossel
3 Trennschalter	4 Sicherungstrennschalter
5 Kompaktleistungsschalter (MCCB)	6 Schütz
7 dU/dt-Filter	8 Gleichtaktfilter
9 Sinusfilter	10 Frequenzumrichtermodul (verschiedene Nennleistungen)

Abbildung 6: Abbildung eines E5h/E6h-Schaltschranks und den Positionen der verfügbaren Optionen

3.4 Typendaten

3.4.1 Ermittlung des Frequenzumrichters und seiner Optionen

Context:


Die Baugröße und die spezifischen Optionen sind im gesamten Handbuch ein Indikator, da sich die Anwendungen und Komponenten der Frequenzumrichter und Optionen unterscheiden. Bestimmen Sie den schaltschrankbasierten Frequenzumrichter anhand der folgenden Schritte:

Vorgehensweise

- 1. Suchen Sie den Typencode (T/C) auf dem Typenschild. Das Typenschild befindet sich an der Außenseite des Frequenzumrichters in der Nähe des unteren Gitters oder an der Innenseite der Schaltschranktür, die das Steuerfach enthält.
- 2. Bestimmen Sie den Schaltschranktyp, indem Sie die folgenden Informationen aus dem Typencode entnehmen:
 - A Produktgruppe und Frequenzumrichterserie (Zeichen 1-6).
 - B Nennspannung (Zeichen 8).
 - C Modell/Nennleistung (Zeichen 10-12).
- 3. Navigieren Sie zu Tabelle 3 und verwenden Sie zur Suche der Baugröße die Modellnummer und Nennspannung.
- 4. Entnehmen Sie dem Typencode die folgenden Optionscodes.
 - A Low Harmonic Filter (Zeichen 7).
 - B Bremse (Zeichen 15).
 - C Netz (Zeichen 16-17).
 - D Ausgangsfilter (Zeichen 18).
 - E Zusätzlicher leerer Schaltschrank (Zeichen 19).
 - F Kabeleinführung (Zeichen 20).
 - G Rückseitige Kühlung (Zeichen 22).
 - H Zusatzfunktion (Zeichen 22-23).
 - I Türmontierte Optionen (Zeichen 28–29).
- 5. Bestimmen Sie anhand der Optionscodes in 3.4.3 Bestimmung des Optionscodes die installierten Optionen.

Beispiel:

30bu 139.10

- 1 Typencode.
- 3 Frequenzumrichter-Serie
 - 102 = VLT[®] HVAC Drive
 - 202 = VLT® AQUA Drive
 - 302 = VLT[®] AutomationDrive

- 2 Produktgruppe (PLV = Schaltschrankbasierter Frequenzumrichter)
- 4 Low Harmonic Filter-Option
- 6 Modell/Nennleistung
- 8 Optionscodes

- 5 Netzspannung
 - 4 = 380–480 V
 - 5 = 380-500 V
 - 6 = 525-690 V
- 7 Herstellungsdatum (wwy, wobei ww = Woche und y = letzte Ziffer des Jahres)

Abbildung 7: Verwendung des Typenschilds zum Bestimmen der Baugröße und der installierten Optionen

3.4.2 Identifizierung der Baugröße

Tabelle 3: Modell nach Frequenzumrichterspannung

Modell	Baugröße (380–480 V)	Baugröße (525–690 V)
N110	D9h	D9h
N132	D9h	D9h
N160	D9h	D9h
N200	D10h	D10h
N250	D10h	D10h
N315	D10h	D10h
N355	E5h	-
N400	E5h	D10h
N450	E5h	E5h
N500	E6h	E5h
N560	E6h	E5h
N630	-	E5h
N710	-	E6h
N800	-	E6h

3.4.3 Bestimmung des Optionscodes

Tabelle 4: Optionscodes für Low-Harmonic Filter

Zeichenposition	Optionscode	Beschreibung
7	Т	Keine
	A	Aktiver Filter
	Р	Passiver Filter, THDi=5 %, 50 Hz
	Н	Passiver Filter, THDi=8 %, 50 Hz
	L	Passiver Filter, THDi=5 %, 60 Hz
	U	Passiver Filter, THDi=8 %, 60 Hz

Tabelle 5: Bremsoptionscodes

Zeichenposition	Optionscode	Beschreibung
15	X	Keine Brems-IGBT
	В	Brems-IGBT
	Т	Safe Torque Off
	U	Brems-IGBT + Safe Torque Off

Tabelle 6: Netzoptionscodes

Zeichenposition	Optionscode	Beschreibung
16–17 MX		Keine
	M1	Sicherungstrennschalter
	M2	Trennschalter
	M3	Trennschalter (MCCB)
	M4	Schütz
	M5	AC-Drossel
	M6	Sicherungen
	MA	Sicherungstrennschalter + Schütz
	МВ	Trennschalter + Schütz
	MC	AC-Drossel + Schmelztrennschalter
	MD	AC-Drossel + Sicherungstrennschalter + Schütz
	ME	AC-Drossel + nicht schmelzbarer Trennschalter
	MF	AC-Drossel + Trennschalter (MCCB)
	MG	AC-Drossel + Schütz
	МН	AC-Drossel + Trennschalter + Schütz

Tabelle 7: Optionscodes für Ausgangsfilter

Zeichenposition	Optionscode	Beschreibung
18	X	Keine
	D	dU/dt
	S	Sinus
	С	Gleichtakt
	1	Gleichtakt + dU/dt
	2	Gleichtakt + Sinus

Tabelle 8: Optionscodes für zusätzlichen Schaltschrank

Zeichenposition	Optionscode	Beschreibung
19	X	Keine
	4	400 mm (15,8 in), linke Seite
	6	600 mm (23,6 in), linke Seite
	A	400 mm (15,8 in), rechte Seite
	В	600 mm (23,6 in), rechte Seite

Tabelle 9: Optionscodes für Kabeleinführung

Zeichenposition	Optionscode	Beschreibung
20	X	Unterseite
	Т	Oberseite
	L	Netz Oberseite, Motor Unterseite
	M	Netz Unterseite, Motor Oberseite

Tabelle 10: Codes für zusätzliche Spannungsversorgung

Zeichenposition	Optionscode	Beschreibung
21	X	Keine Versorgung
	1	230 V AC extern
	2	230 V AC intern
	4	230 V AC intern + 24 V DC intern
	5	230 V AC extern + 24 V DC intern
	6	120 V AC extern
	7	120 V AC intern
	8	120 V AC intern + 24 V DC intern
	9	120 V AC extern + 24 V DC intern

Tabelle 11: Optionscodes für rückseitige Kühlung

Zeichenposition	Optionscode	Beschreibung
22	X	Einlass Unterseite, Auslass Oberseite
	1	Einlass Rückseite, Auslass Rückseite
	С	Einlass Rückseite, Auslass Oberseite
	D	Einlass Unterseite, Auslass Rückseite
	N	Keine

Tabelle 12: Funktionserweiterung-Optionscodes

Zeichenposition	Option- scode	Beschreibung
23–24	XX	Keine Zusatzoptionen
	A1	Steckdose + Schaltschrankleuchte
	A2	Erweiterte I/O-Klemmen
	А3	Schaltschrankheizung
	A4	Motorheizungssteuerung
	A5	Isolationsüberwachung
	AA	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen
	AB	Steckdose + Schaltschrankleuchte + Schaltschrankheizung
	AC	Steckdose + Schaltschrankleuchte + Motorheizungssteuerung
	AD	Steckdose + Schaltschrankleuchte + Isolationsüberwachung
	AE	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Schaltschrankheizung
	AF	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Motorheizungssteuerung
	AG	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Isolationsüberwachung
	AH	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Schaltschrankheizung + Motorheizungssteuerung
	Al	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Schaltschrankheizung + Isolationsüberwachung
	AJ	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Motorheizungssteuerung + Isolationsüberwachung
	AK	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Schaltschrankheizung + Motorheizungssteuerung + Isolationsüberwachung
	AL	Steckdose + Schaltschrankleuchte + Schaltschrankheizung + Motorheizungssteuerung
	AM	Steckdose + Schaltschrankleuchte + Schaltschrankheizung + Isolationsüberwachung
	AN	Steckdose + Schaltschrankleuchte + Schaltschrankheizung + Motorheizungssteuerung + Isolationsüberwachung
	AO	Steckdose + Schaltschrankleuchte + Motorheizungssteuerung + Isolationsüberwachung
	AP	Erweiterte I/O-Klemmen + Schaltschrankheizung
	AQ	Erweiterte I/O-Klemmen + Motorheizungssteuerung
	AR	Erweiterte I/O-Klemmen + Isolationsüberwachung
	AS	Erweiterte I/O-Klemmen + Schaltschrankheizung + Motorheizungssteuerung
	AT	Erweiterte I/O-Klemmen + Schaltschrankheizung + Isolationsüberwachung
	AU	Erweiterte I/O-Klemmen + Schaltschrankheizung + Motorheizungssteuerung + Isolationsüberwachung
	AV	Erweiterte I/O-Klemmen + Motorheizungssteuerung + Isolationsüberwachung
	AW	Schaltschrankheizung + Motorheizungssteuerung
	AX	Schaltschrankheizung + Isolationsüberwachung
	AY	Schaltschrankheizung + Motorheizungssteuerung + Isolationsüberwachung
	AZ	Motorheizungssteuerung + Isolationsüberwachung

Tabelle 13: Türmontierte Optionscodes

Zeichenposition	Option- scode	Beschreibung
28–29	XX	Keine
	D1	Anzeigeleuchten und Reset-Taste
	D2	Not-Aus-Schalter + Not-Aus-Drucktaste
	D3	STO mit Not-Aus-Drucktaste (keine Funktionssicherheit)
	D4	STO/SS1 mit Not-Aus-Drucktaste + "Sicher begrenzte Geschwindigkeit" (SLS – Safely Limited Speed) (TTL-Geber)
	D5	STO/SS1 mit Not-Aus-Drucktaste + "Sicher begrenzte Geschwindigkeit" (SLS – Safely Limited Speed) (HTL-Geber)
	DA	Anzeigeleuchten und Reset-Taste + Not-Aus-Schalter und Not-Aus-Drucktaste
	DB	Anzeigeleuchten und Reset-Taste + STO mit Not-Aus-Drucktaste (keine Funktionssicherheit)
	DC	Anzeigeleuchten und Reset-Taste + STO/SS1 mit Not-Aus-Drucktaste + "Sicher begrenzte Geschwindigkeit" (SLS – Safely Limited Speed) (TTL-Geber)
	DE	Anzeigeleuchten und Reset-Taste + STO/SS1 mit Not-Aus-Drucktaste + "Sicher begrenzte Geschwindigkeit" (SLS – Safely Limited Speed) (HTL-Geber)

3.5 Nennleistungen und Abmessungen der Baugrößen D9h-D10h und E5h-E6h

Tabelle 14: Nennleistungen und Abmessungen der Baugrößen D9h–D10h und E5h–E6h (Standardkonfigurationen)

Schaltschrankbasierter Frequenzum- richter	D9h	D10h	E5h	E6h
Nennleistung bei 380-480 V [kW (HP)]	110–160 (150– 250)	200–315 (300–450)	355–450 (500–600)	500–560 (650–750)
Nennleistung bei 525-690 V [kW]	110–160 (125– 200)	200–400 (250–400)	450–630 (450–650)	710–800 (750–950)
Schutzart	IP21 (NEMA 1)/ IP54 (NEMA 12)	IP21 (NEMA 1)/IP54 (NEMA 12)	IP21 (NEMA 1)/IP54 (NEMA 12)	IP21 (NEMA 1)/IP54 (NEMA 12)
Frequenzumrichter-Schaltschrank	D9h	D10h	E5h	E6h
Höhe [mm (in)] ⁽¹⁾	2100 (82,7)	2100 (82,7)	2100 (82,7)	2100 (82,7)
Breite [mm (in)] (2)	400 (15,8)	600 (23,6)	600 (23,6)	800 (31,5)
Tiefe [mm]	600 (23,6)	600 (23,6)	600 (23,6)	600 (23,6)
Gewicht [kg (lb)] (2)	280 (617)	355 (783)	400 (882)	431 (950)
Eingangsfilterschrank	D9h	D10h	E5h	E6h
Höhe [mm (in)] ⁽¹⁾	2100 (82,7)	2100 (82,7)	2100 (82,7)	2100 (82,7)
Breite [mm]	400 (15,8)	400 (15,8)/600 (23,6)	600 (23,6)	600 (23,6)/800 (31,5)
Tiefe [mm]	600 (23,6)	600 (23,6)	600 (23,6)	600 (23,6)

Schaltschrankbasierter Frequenzum- richter	D9h	D10h	E5h	E6h
Gewicht [kg (lb)]	410 (904)	410 (904)/530 (1168)	530 (1168)	530 (1168)/955 (2105)
Eingangsleistungs-Optionsschrank	D9h	D10h	E5h	E6h
Höhe [mm (in)] (1)	_	2100 (82,7)	2100 (82,7)	2100 (82,7)
Breite [mm]	_	600 (23,6)	600 (23,6)	600 (23,6)
Tiefe [mm]	_	600 (23,6)	600 (23,6)	600 (23,6)
Gewicht [kg (lb)]	_	380 (838)	380 (838)	380 (838)
Sinusfilterschrank	D9h	D10h	E5h	E6h
Höhe [mm (in)] (1)	2100 (82,7)	2100 (82,7)	2100 (82,7)	2100 (82,7)
Breite [mm]	600 (23,6)	600 (23,6)	1200 (47,2)	1200 (47,2)
Tiefe [mm]	600 (23,6)	600 (23,6)	600 (23,6)	600 (23,6)
Gewicht [kg (lb)]				
dU/dt-Filterschrank	D9h	D10h	E5h	E6h
Höhe [mm (in)] (1)	_	_	2100 (82,7)	2100 (82,7)
Breite [mm (in)] (3)	_	_	400 (15,8)	400 (15,8)
Tiefe [mm]	_	_	600 (23,6)	600 (23,6)
Gewicht [kg (lb)]	_	_	240 (529)	240 (529)
Schaltschrank mit oberer Kabeleinführung/Kabelausführung	D9h	D10h	E5h	E6h
Höhe [mm (in)] (1)	2100 (82,7)	2100 (82,7)	2100 (82,7)	2100 (82,7)
Breite [mm (in)] (3)	400 (15,8)	400 (15,8)	400 (15,8)	400 (15,8)
Tiefe [mm]	600 (23,6)	600 (23,6)	600 (23,6)	600 (23,6)
Gewicht [kg (lb)]	164 (362)	164 (362)	164 (362)	164 (362)

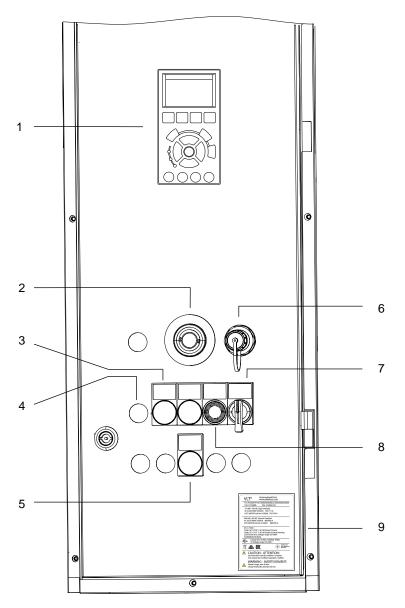
¹ Die Schaltschrankhöhe beinhaltet den Standardsockel mit einer Höhe von 100 mm (3,9 in). Optional sind Sockel mit einer Höhe von 200 mm (7,9 in) bzw. 400 mm (15,8 in) erhältlich.

3.6 Steuereinschub und LCP-Bedieneinheit

3.6.1 Steuerfach – Übersicht

Das Steuerfach ist ein in sich geschlossener Raum, der ohne Öffnen des Frequenzumrichtergehäuses zugänglich ist. Das Steuerfach enthält Folgendes:

² Ohne Optionen.


³ Die Baugrößen E5h und E6h enthalten 2 Sinusfilter-Schrank. Die angegebene Breite entspricht dem Gesamtmaß beider Schränke.

- Bedieneinheit (LCP).
- Klemmen für Optionskarten.
- Optionale Zusatzkomponenten und entsprechende Verkabelung.
- Klemmen für interne Anschlüsse.
- Klemmen für Steuerverkabelung.
- Produkttypenschild.
- Tasten und Anzeigeleuchten (an der Außentür).

Kabel- und Klemmenbeschreibungen siehe 5.7.2 Ansicht des Steuerfach-Innenraums.

3.6.2 Steuerfachtür

1 Bedieneinheit (LCP)	2 Not-Aus-Drucktaste
3 Fehleranzeigeleuchte	4 Betriebsleuchtanzeige
5 Isolierungsfehleranzeigeleuchte	6 USB-Anschluss
7 0–1 Startschalter	8 Reset-Taste
9 Typenschild	

Abbildung 8: Außentür des Steuerfachs (abgebildet mit allen Optionen)

e30bu142.10

3.6.3 Bedieneinheit (LCP)

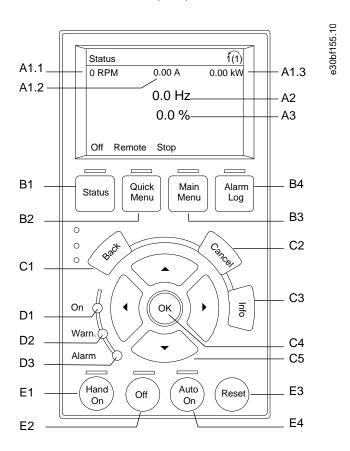


Abbildung 9: Grafisches LCP-Bedienteil

A. Displaybereich

Mit jeder Displayanzeige ist ein Parameter verknüpft. Siehe <u>Tabelle 15</u>. Sie können die am LCP angezeigten Informationen an spezielle Anwendungen anpassen. Siehe Benutzer-Menü im Abschnitt "LCP-Menü".

Tabelle 15: LCP-Displaybereich

ID	Parameter	Werkseinstellung
A1.1	Parameter 0-20 Displayzeile 1.1 klein	Sollwert [Einheit]
A1.2	Parameter 0-21 Displayzeile 1.2 klein	Analogeingang 53 [V]
A1.3	Parameter 0-22 Displayzeile 1.3 klein	Motorstrom [A]
A2	Parameter 0-23 Displayzeile 2 groß	Frequenz [Hz]
A3	Parameter 0-24 Displayzeile 3 groß	Feedback [Unit]

B. Menütasten

Verwenden Sie die Menütasten zum Aufrufen des Menüs zum Konfigurieren der Parameter, zum Navigieren in den Statusanzeigemodi während des Normalbetriebs und zur Anzeige der Fehlerspeicherdaten.

Tabelle 16: LCP-Menütasten

ID	Taste	Funktion
B1	Status	Zeigt Betriebszustände an.
B2	Quick Menu	Ermöglicht den schnellen Zugang zu Parametern für die erste Inbetriebnahme. Stellt auch viele detaillierte Anwendungsschritte bereit. Siehe Quick-Menü-Modus im Abschnitt "LCP-Menü".
В3	Hauptmenü	Ermöglicht den Zugriff auf alle Parameter. Siehe Hauptmenü-Modus im Abschnitt "LCP-Menü".
B4	Alarm Log	Zeigt eine Liste aktueller Warnungen und der letzten 10 Alarme an.

C. Navigationstasten

Verwenden Sie die Navigationstasten, um Funktionen zu programmieren und den Displaycursor zu bewegen. Die Navigationstasten ermöglichen zudem eine Drehzahlsteuerung im Handbetrieb (Ortsteuerung). Stellen Sie die Displayhelligkeit durch Drücken der Taste [Status] und der Pfeiltasten [4]/[7] ein.

Tabelle 17: LCP-Navigationstasten

ID	Taste	Funktion
C1	Back	Kehrt zum vorhergehenden Schritt oder Liste in der Menüstruktur zurück.
C2	Abbrechen	Macht die letzte Änderung oder den letzten Befehl rückgängig, so lange der Anzeigemodus bzw. die Displayanzeige nicht geändert worden ist.
C3	Info	Zeigt Informationen zur angezeigten Funktion an.
C4	ОК	Ruft Parametergruppen auf oder aktiviert eine Option.
C5	[△][▷][▽][◁]	Ermöglicht es, zwischen den Optionen im Menü zu wechseln.

D. Anzeigeleuchten

Leuchtanzeigen dienen zur Bestimmung des Frequenzumrichterzustands und liefern eine visuelle Benachrichtigung zu Warnungen oder Fehlerbedingungen.

Tabelle 18: LCP-Leuchtanzeigen

ID	Anzeige	LED	Funktion
D1	On	Grün	Ist aktiv, wenn das Netz oder eine externe 24-V-DC-Versorgung den Frequenzumrichter versorgt.
D2	Warn.	Gelb	Zeigt an, wenn Warnbedingungen aktiv sind. Im Anzeigebereich erscheint ein Text, der das Problem bestimmt.
D3	Fehler	Rot	Zeigt das Vorliegen einer Fehlerbedingung an. Im Anzeigebereich erscheint ein Text, der das Problem bestimmt.

E. Bedientasten und Quittieren (Reset)

Die Bedientasten befinden sich im unteren Bereich des LCP-Bedienteils.

Tabelle 19: LCP-Bedientasten und Quittieren (Reset)

ID	Taste	Funktion
E1	[Hand On]	Startet den Frequenzumrichter im Handbetrieb. Ein externes Stoppsignal über Steuersignale oder serielle Kommunikation hebt den Handbetrieb [Hand On] auf.

30 | Danfoss A/S © 2018.10 AQ262141056213de-000101 / 130R0882

ID	Taste	Funktion
E2	Aus	Stoppt den angeschlossenen Motor, schaltet jedoch nicht die Spannungsversorgung zum Frequenzumrichter ab.
E3	Reset	Dient dazu, den Frequenzumrichter nach Behebung eines Fehlers manuell zurückzusetzen.
E4	Auto On	Schaltet das System in den Fernbetrieb um, sodass es auf einen externen Startbefehl durch Steuerklemmen oder serielle Kommunikation reagieren kann.

3.6.4 LCP-Menü

Ouick-Menüs

Das *Quick-Menü* zeigt eine Liste der Menüs, die zur Konfiguration und Bedienung des Frequenzumrichters verwendet werden. Wählen Sie den [Quick Menu]- Modus durch Drücken der *Quick-Menü*-Taste aus. Die resultierende Anzeige wird auf dem Display des LCP angezeigt.

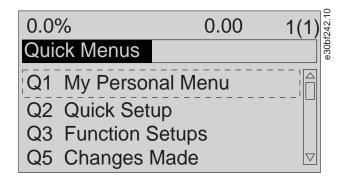


Abbildung 10: Quick-Menü-Ansicht

Q1 My Personal Menu (Benutzer-Menü)

Über das Benutzer-Menü wird festgelegt, was im Anzeigebereich angezeigt wird. Siehe <u>3.6.3 Bedieneinheit (LCP)</u>. Dieses Menü kann bis zu 50 vorprogrammierte Parameter anzeigen. Diese 50 Parameter werden manuell über *Parameter 0-25 Benutzer-Menü* eingegeben.

Q2 Inbetriebnahme - Menü

Die Parameter in Q2 Inbetriebnahme - Menü enthalten grundlegende System- und Motordaten, die immer für die Konfiguration des Frequenzumrichters benötigt werden. Siehe <u>7.2.4 Eingeben von Systeminformationen</u> für die Inbetriebnahmeverfahren.

Q3 Funktionssätze

Die Parameter in Q3 Funktionssätze enthalten Daten für Lüfter-, Kompressor- und Pumpenfunktionen. Dieses Menü umfasst auch Parameter für die LCP-Anzeige, digitale Festdrehzahlen, Skalierung von Analogsollwerten sowie Einzel- und Mehrzonenanwendungen mit PID-Regelung.

Q4 Smart Setup

Q4 Smart Setup leitet den Anwender durch typische Parametereinstellungen, die Sie zur Konfiguration einer der folgenden drei Anwendungen verwenden können:

- · Mechanische Bremse.
- · Förderband.
- Pumpe/Lüfter.

Mit der Taste [Info] können Sie Hilfeinformationen für verschiedene Auswahlmöglichkeiten, Einstellungen und Meldungen anzeigen.

Q5 Changes Made (Liste geänderte Par.)

Wählen Sie Q5 Changes Made (Liste geänderte Par.) aus, um folgende Informationen zu erhalten:

- Die 10 letzten Änderungen.
- · Seit der Werkseinstellung vorgenommene Änderungen.

Q6 Loggings (Protokolle)

Verwenden Sie Q6 Loggings (Protokolle) zur Fehlersuche. Wählen Sie Protokolle, um Informationen zur grafischen Darstellung der in den Displayzeilen angezeigten Betriebsvariablen zu erhalten. Die Informationen werden als Kurvenbilder angezeigt. Sie können nur in *Parameter 0-20 Displayzeile 1.1* bis *Parameter 0-24 Displayzeile 3* ausgewählte Parameter auswählen. Sie können bis zu 120 Abtastwerte zum späteren Abruf im Speicher ablegen.

Tabelle 20: Protokollierungsparameter - Beispiele

Q6 Loggings (Protokolle)			
Parameter 0-20 Displayzeile 1.1	Sollwert [Einheit]		
Parameter 0-21 Displayzeile 1.2	Analogeingang 53 [V]		
Parameter 0-22 Displayzeile 1.3	Motorstrom [A]		
Parameter 0-23 Displayzeile 2	Frequenz [Hz]		
Parameter 0-24 Displayzeile 3	Istwert [Einheit]		

Q7 Wasser und Pumpen

Die Parameter in Q7 Wasser und Pumpen enthalten grundlegende Daten, die zur Konfiguration von Wasserpumpenanwendungen benötigt werden.

Hauptmenü

Der Modus Hauptmenü wird für Folgendes verwendet:

- Listet die Parametergruppen auf, die für den Frequenzumrichter und die Antriebsoptionen verfügbar sind.
- · Änderung der Parameterwerte.

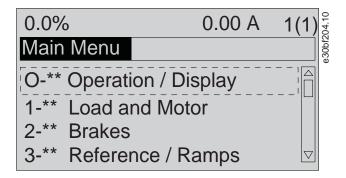
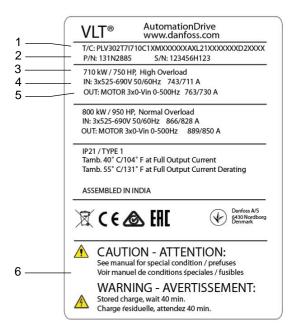
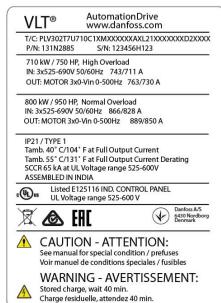


Abbildung 11: Hauptmenüansicht



4 Mechanische Installation


4.1 Gelieferte Teile

Die gelieferten Teile können je nach Produktkonfiguration unterschiedlich sein.

- Stellen Sie sicher, dass die gelieferten Teile und die Angaben auf dem Typenschild mit der Auftragsbestätigung übereinstimmen.
- Überprüfen Sie die Verpackung und den Frequenzumrichter per Sichtprüfung auf Beschädigungen, die eine unsachgemäße Handhabung beim Versand verursacht hat. Machen Sie Beanstandungen direkt beim Spediteur geltend. Bewahren Sie beschädigte Teile zur Klärung auf.

Ausgangsspannung, Frequenz und Strom (bei niedrigen/

Voir manuel de conditions speciales / fusibles

WARNING - AVERTISSEMENT:
Stored charge, wait 40 min.
Charge fesiduelle, attendez 40 min.

Teilenummer und Seriennummer

Eingangsspannung, Frequenz und Strom (bei niedrigen/hohen Spannungen)

Abbildung 12: Beispiel für ein Produkttypenschild für die Baugröße E6h (IEC-Ausführung links, UL-Ausführung rechts)

HINWEIS

6 Entladezeit

GARANTIE

Typencode

Nennleistung

hohen Spannungen)

Das Entfernen des Typenschilds vom Frequenzumrichter kann einen Verlust des Garantieanspruchs zur Folge haben.

4.2 Teillieferung

Je nachdem, welche Optionen mit einem schaltschrankbasierten Frequenzumrichter bestellt werden, kann der Antrieb aus 5 Schränken bestehen und 3400 mm (134 in) Breite messen, was Transport und Handhabung erschwert. In Fällen, in denen ein schaltschrankbasierter Frequenzumrichter eine Breite von mehr als 1800 mm (71 in) aufweist, werden die Schränke getrennt und in

e30bu138.10

mehreren Verschlägen geliefert. Alle für den Wiederzusammenbau benötigten Beschlagteile sind im Lieferumfang enthalten. Informationen zum Wiederzusammenbau einer Teillieferung finden Sie unter <u>4.10 Kombinieren mehrerer Schaltschränke aus Teillieferungen</u> und <u>5.6.1 Anschluss der Kabelbäume</u>.

4.3 Benötigte Werkzeuge

- I-Träger und Haken, die für das Heben des Frequenzumrichtergewichts zugelassen sind. Siehe im Abschnitt "Nennleistungen, Gewicht und Abmessungen".
- Kran oder sonstige Hubvorrichtung für die Positionierung des Geräts.
- Bohrer mit 10- oder 12-mm-Bits.
- Bandmaß.
- Kreuz- und Schlitzschraubendreher in verschiedenen Größen.
- Schraubenschlüssel mit entsprechenden Steckschlüsseln (7–17 mm).
- · Verlängerungen für Schraubenschlüssel.
- Torx-Antriebe (T25 und T50).
- Blechstanze für Kabeleinführungsplatte.

4.4 Lagerung

Lagern Sie den Frequenzumrichter an einem trockenen Ort. Es wird empfohlen, das Gerät bis zur Installation verschlossen in der Verpackung zu belassen. Informationen zur empfohlenen Umgebungstemperatur siehe im Abschnitt "Umgebungsbedingungen".

Während der Lagerung ist ein regelmäßiges Formieren (Laden der Kondensatoren) nicht erforderlich, sofern ein Zeitraum von 12 Monate nicht überschritten wird.

4.5 Betriebsumgebung

4.5.1 Betriebsumgebung – Übersicht

In Umgebungen, in denen Aerosol-Flüssigkeiten, Partikel oder korrosive Gase in der Luft enthalten sind, müssen Sie sicherstellen, dass die IP/NEMA-Schutzart der Geräte der Installationsumgebung entspricht. Siehe im Abschnitt "Umgebungsbedingungen".

HINWEIS

KONDENSATION

Feuchtigkeit kann an den elektronischen Komponenten kondensieren und Kurzschlüsse verursachen.

- Vermeiden Sie eine Installation in Bereichen, in denen Frost auftritt.
- Installieren Sie eine optionale Schaltschrankheizung, wenn der Frequenzumrichter kühler als die Umgebungsluft ist.
- Im Standby-Betrieb wird die Kondensation reduziert, solange der Leistungsverlust die Schaltung frei von Feuchtigkeit hält.

HINWEIS

EXTREME UMGEBUNGSBEDINGUNGEN

Heiße oder kalte Temperaturen beeinträchtigen Leistung und Langlebigkeit von Geräten.

- Das Gerät darf nicht in Umgebungen mit einer Umgebungstemperatur von über 55 °C (131 °F) betrieben werden.
- Der Frequenzumrichter kann bei Temperaturen bis zu -10 °C (14 °F) betrieben werden. Ein ordnungsgemäßer Betrieb bei Nennlast ist jedoch erst bei Temperaturen ab 0 °C (32 °F) oder höher garantiert.
- Eine zusätzliche Klimatisierung des Schaltschranks oder des Installationsorts ist erforderlich, wenn die Grenzwerte für die Umgebungstemperatur überschritten werden.

4.5.2 Gase in der Betriebsumgebung

Aggressive Gase wie Schwefelwasserstoff, Chlor oder Ammoniak können die elektrischen und mechanischen Komponenten beschädigen. Das Gerät verwendet schutzbeschichtete Leiterplatten zur Reduzierung der Auswirkungen von aggressiven Gasen.

Spezifikationen und Nennwerte der Schutzbeschichtungsklassen sind im Abschnitt "Umgebungsbedingungen" zu finden.

4.5.3 Staub in der Betriebsumgebung

Halten Sie bei der Installation des Frequenzumrichters in staubigen Umgebungen Folgendes frei von Staub:

- · Elektronische Komponenten.
- · Kühlkörper.
- Lüfter.

Regelmäßige Wartung

Wenn sich Staub an elektronischen Bauteilen ansammelt, wirkt er als Isolierungsschicht. Diese Schicht reduziert die Kühlleistung der Komponenten, sodass sich die Komponenten erwärmen. Die heißere Umgebung führt zu einer Reduzierung der Lebensdauer der elektronischen Komponenten. Staub kann sich auch auf den Lüfterflügeln ansammeln und zu einem Ungleichgewicht führen, das eine ordnungsgemäße Kühlung des Geräts durch den Lüfter verhindert. Staubansammlungen können auch Lüfterlager beschädigen und zu einem vorzeitigen Ausfall der Lüfter führen.

Weitere Informationen finden Sie im Abschnitt "Wartung und Instandhaltung".

4.5.4 Explosionsgefährdete Bereiche

⚠ WARNUNG ⚠

EXPLOSIVE ATMOSPHERE

Installing the drive in a potentially explosive atmosphere can lead to death, personal injury, or property damage.

- Install the unit in a cabinet outside of the potentially explosive area.
- Use a motor with ATEX protection class d or class e.
 - Class d (if a spark occurs, it is contained in a protected area).
 - Class e (prohibits any occurrence of a spark).
- Install a PTC temperature sensor to monitor the motor temperature.
- Install short motor cables.
- Use sine-wave output filters when shielded motor cables are not used.

Gemäß den Anforderungen der EU-Richtlinie 94/9/EG müssen alle elektrischen oder elektronischen Geräte, die für den Einsatz in einer Umgebung mit einem explosionsgefährdeten Gemisch aus Luft, brennbarem Gas oder Staub bestimmt sind, ATEX-zertifiziert sein. Anlagen, die in dieser Umgebung betrieben werden, müssen die folgenden besonderen Bedingungen erfüllen, um die ATEX-Schutzart zu erfüllen:

Motoren mit der Zündschutzart d

Erfordert keine Zulassung. Spezielle Verdrahtung und Eindämmung sind erforderlich.

Motoren mit der Zündschutzart e

In Kombination mit einer ATEX-zugelassenen PTC-Überwachungsvorrichtung wie der VLT® PTC Thermistor Card MCB 112 ist für die Installation keine separate Zulassung einer approbierten Organisation erforderlich.

Motoren mit der Zündschutzart d/e

Der Motor ist von der Zündschutzart e, während die Motorverkabelung und die Anschlussumgebung in Übereinstimmung mit der Klassifizierung d ist. Verwenden Sie zur Dämpfung einer hohen Spitzenspannung einen Sinusfilter am Ausgang.

HINWEIS

ÜBERWACHUNG DES MOTORTHERMISTORSENSORS

VLT[®] AutomationDrive-Einheiten mit der Option VLT[®] PTC Thermistor Card MCB 112 sind PTB-zertifiziert für explosionsgefährdete Bereiche.

4.6 Installationsanforderungen

HINWEIS

ÜBERHITZUNG

Eine unsachgemäße Montage kann zu Überhitzung und einer reduzierten Leistung führen.

- Installieren Sie den Frequenzumrichter unter Berücksichtigung aller Installations- und Kühlanforderungen.

- Stellen Sie das Gerät so nah wie möglich am Motor auf. Informationen zur Maximallänge für Motorkabel sind in 10.5 Steuerleitungen angegeben.
- Sorgen Sie durch Montage des Geräts auf einer festen Oberfläche dafür, dass das Gerät stabil steht.
- Achten Sie darauf, dass der Montageort stabil genug ist, um das Gewicht des Geräts zu tragen.
- Achten Sie darauf, dass rund um das Gerät ausreichend Platz für eine ordnungsgemäße Kühlung vorhanden ist. Siehe 10.10 Luftzirkulation im Gehäuse.
- · Achten Sie darauf, dass ausreichend Platz zum Öffnen der Tür ist.
- Achten Sie darauf, dass die Kabeleinführung von unten erfolgt.

4.7 Kühlanforderungen

HINWEIS

ÜBERHITZUNG

Eine unsachgemäße Montage kann zu Überhitzung und einer reduzierten Leistung führen.

- Installieren Sie den Frequenzumrichter unter Berücksichtigung aller Installations- und Kühlanforderungen.
- Sehen Sie über und unter dem Frequenzumrichter zur Luftzirkulation einen ausreichenden Abstand vor. Abstandsanforderung: 225
 mm.
- Achten Sie auf eine ausreichende Luftdurchflussrate. Siehe 4.8 Luftdurchsatz.
- Berücksichtigen Sie eine Leistungsreduzierung aufgrund hoher Temperaturen zwischen 45 °C (113 °F) und 50 °C (122 °F) und einer Höhenlage von 1000 m über dem Meeresspiegel. Weitere Informationen finden Sie im gerätespezifischen Projektierungshandbuch.

Der schaltschrankbasierte Frequenzumrichter, mit Ausnahme des Eingangsleistungs-Optionsschranks, nutzt ein Kühlkonzept über rückseitige Kühlkanäle, die Kühlkörperkühlluft abführen. Die Kühlluft vom Kühlkörper führt ca. 90 % der Wärme über die Rückseite des Frequenzumrichters ab. Eine Option mit rückseitigem Kühlkanal ermöglicht das Einleiten der Kühlluft anschließende Abführen aus dem Raum, in dem der Frequenzumrichter installiert ist.

4.8 Luftdurchsatz

Tabelle 21: Luftdurchsatz für die Baugröße D9h

Schaltschrank	Lüfter des rückseitigen Ka- nals [m³/Std (cfm)]	Oberer Lüfter des Frequen- zumrichtermoduls [m³/Std (cfm)]	Schaltschrank-Türlüft- er [m³/Std (cfm)]
PHF/Netzdrossel	450 (265)	_	-
Frequenzumrichter	420 (250)	102 (60)	150 (90)
dU/dt	-	-	-
Sinus	900 (530)	-	-
Obere Kabeleinführung/obere Kabelausführung	-	-	-

Tabelle 22: Luftdurchsatz für die Baugröße D10h

Schaltschrank	Lüfter des rückseitigen Ka- nals [m³/Std (cfm)]	Oberer Lüfter des Frequen- zumrichtermoduls [m³/Std (cfm)]	Schaltschrank-Türlüfter [m³/Std (cfm)]
PHF/Netzdrossel	450 (265)	-	_
Eingangsoptionen	-	-	510 (310)
Frequenzumrichter	840 (500)	204 (120)	315 (185)
dU/dt	-	-	-
Sinus	900 (530)	-	_
Obere Kabeleinführung/obere Kabelausführung	_	-	-

Tabelle 23: Luftdurchsatz für die Baugröße D5h

Schaltschrank	Lüfter des rückseitigen Ka- nals [m³/Std (cfm)]	Oberer Lüfter des Frequen- zumrichtermoduls [m³/Std (cfm)]	Schaltschrank-Türlüfter [m³/Std (cfm)]
PHF/Netzdrossel	765 (450)	-	-
Eingangsoptionen	_	_	510 (310)
Frequenzumrichter	994 (585)	595 (350)	335 (200)
dU/dt	665 (392)	-	-
Sinus	2x900 (530)	-	-
Obere Kabeleinführung/obere Kabelausführung	-	-	_

Tabelle 24: Luftdurchsatz für die Baugröße E6h

Schaltschrank	Lüfter des rückseitigen Ka- nals [m³/Std (cfm)]	Oberer Lüfter des Frequenzumrichtermoduls [m³/Std (cfm)]	Schaltschrank-Türlüft- er [m³/Std (cfm)]
PHF/Netzdrossel	1285 (755)	_	_
Eingangsoptionen	-	-	510 (310)
Frequenzumrichter	1053–1206 (620–710)	629 (370)	430 (255)
dU/dt	665 (392)	-	_
Sinus	2x900 (530)	-	-
Obere Kabeleinführung/obere Kabelausführung	-	-	-

4.9 Anheben des Frequenzumrichters

⚠ WARNUNG ⚠

SCHWERES GEWICHT

Der Frequenzumrichter ist schwer. Eine Nichtbeachtung örtlich geltender Sicherheitsvorschriften für das Heben schwerer Gewichte kann zum Tod, zu Personenschäden oder zu Sachbeschädigungen führen!

- Stellen Sie sicher, dass die Hebeanlage in einem ordnungsgemäßen Zustand ist.
- Prüfen Sie das Gewicht des Frequenzumrichters und vergewissern Sie sich, dass die Hebeanlage das Gerät sicher heben kann
- Der Winkel zwischen der Oberkante des Frequenzumrichters und dem Hubseil sollte mindestens 65° betragen.
- Heben Sie das Gerät probeweise um ca. 610 mm (24 in) an, um den richtigen Schwerpunkt zum Anheben zu finden. Ändern Sie den Hebepunkt, wenn die Einheit nicht im Lot ist.
- Gehen Sie niemals unter hängenden Lasten hindurch.

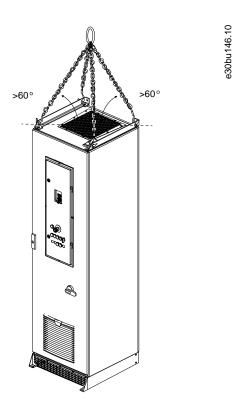
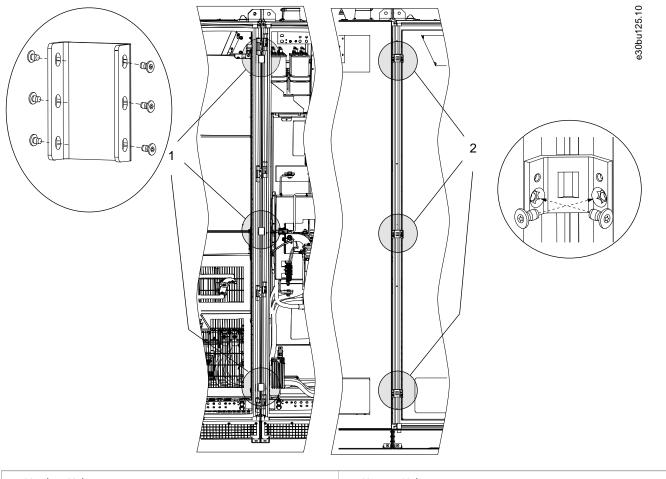


Abbildung 13: Empfohlenes Hebeverfahren



4.10 Kombinieren mehrerer Schaltschränke aus Teillieferungen

Vorgehensweise

- 1. Vergewissern Sie sich, dass die Schaltschränke richtig angeordnet sind, und stellen Sie diese nebeneinander auf. Die richtige Anordnung entnehmen Sie 3.2 Was ist ein schaltschrankbasierter Frequenzumrichter?.
- 2. Befestigen Sie die Schaltschränke aneinander:
 - A Nehmen Sie an allen Schaltschränken die Rittal-Rückwand ab.
 - B Befestigen Sie die Schaltschränke unter Verwendung der hinteren Halterungen an den Rückseiten miteinander. Siehe Abbildung 14.
 - C Befestigen Sie die Schaltschränke unter Verwendung der vorderen Halterungen an den Vorderseiten miteinander. Siehe Abbildung 14.
 - D Bringen Sie die Hebeösen an den Oberseiten der Schaltschränke an. Siehe Abbildung 15.
 - E Verbinden Sie die Erdungsschienen mit dem Verbindungsstück miteinander (siehe schattiertes Teil in Abbildung 16).

Beispiel:

1 Vordere Halterungen

2 Hintere Halterungen

Abbildung 14: Befestigungspunkte für Halterungen an den Schaltschränken

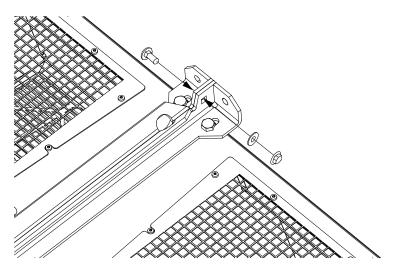


Abbildung 15: Anbringen der Hebeöse zwischen den Schaltschränken

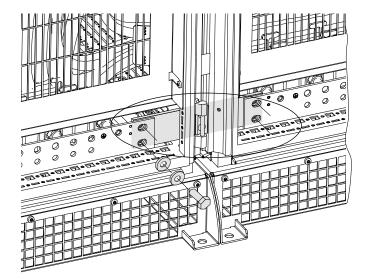


Abbildung 16: Verbinden der Erdungsschiene zwischen den Schaltschränken

4.11 Installation des schaltschrankbasierten Frequenzumrichters

4.11.1 Herstellen einer Kabeleinführung

Vorgehensweise

- 1. Suchen Sie die Schaltschränke, die die Motor- und Netzklemmen enthalten.
- 2. Öffnen Sie die Schaltschranktüren und entfernen Sie alle Schutzabdeckungen an den Klemmen.
- 3. Stellen Sie alle Kabelöffnungen her.
 - Schneiden Sie bei IEC-Ausführungen die Tüllenöffnungen gerade ausreichend auf, damit die Kabel durch diese hindurch geführt werden können.
 - Schneiden oder bohren Sie bei UL-Ausführungen Öffnungen in die Kabeldurchführungsplatte und versehen Sie diese mit geeigneten UL-Schläuchen entsprechend den Netz- und Motorkabelquerschnitten.
- 4. Schließen Sie den Kabelschirm ordnungsgemäß an.
 - Verwenden Sie die Kabelverschraubungen aus Metall, um die Kabelschirme anzuschließen.
 - Verwenden Sie die Bügelschellen, um die Abschirmungen fest anzuschließen. Für bestimmte Konfigurationen liefert Danfoss die Bügelschellen mit.

Beispiel:

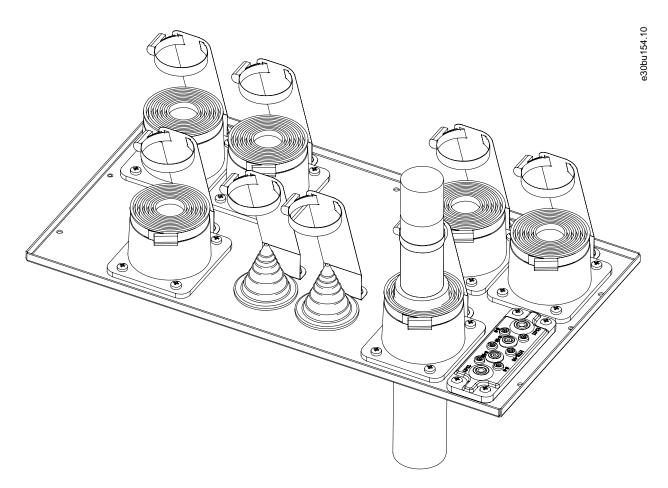


Abbildung 17: Installieren von Motor- und Netzkabeln durch eine IP54-Kabeleinführungsplatte (IEC-Ausführung)

4.11.2 Installation des Frequenzumrichters mit Rückkanalkühloption

Vorgehensweise

- 1. Wählen Sie einen Bereich aus, in dem der Schaltschrank installiert werden soll. Installieren Sie den Schaltschrank nicht in einem luftdichten Raum. Der Frequenzumrichter nimmt ca. 5–10 % der Einlassluft über die Front des Schaltschranks auf.
- 2. Messen Sie die Kanalöffnungen auf der Rückseite der Schränke und schaffen Sie entsprechende Öffnungen in der Wand, wo sich der Schaltschrank befinden wird.
- 3. Wenn der schaltschrankbasierte Frequenzumrichter mit einer Schaltschrankheizung konfiguriert ist, schließen Sie das Versorgungskabel der Schaltschrankheizung an die richtigen Klemmen im Steuerfach an. Siehe <u>5.7.2 Ansicht des Steuerfach-Innenraums</u>.
- 4. Bewegen Sie den Schaltschrank in Wandnähe und richten Sie die Schaltschrankkanäle an den Öffnungen in der Wand aus.
- 5. Achten Sie auf eine luftdichte Abdichtung zwischen Kanal und Wandöffnung.

Beispiel:

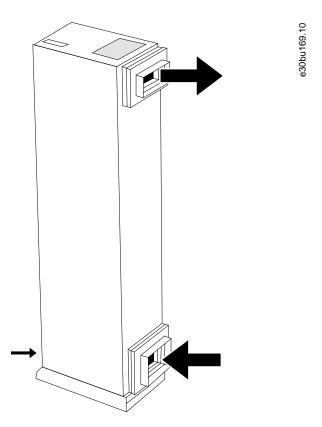
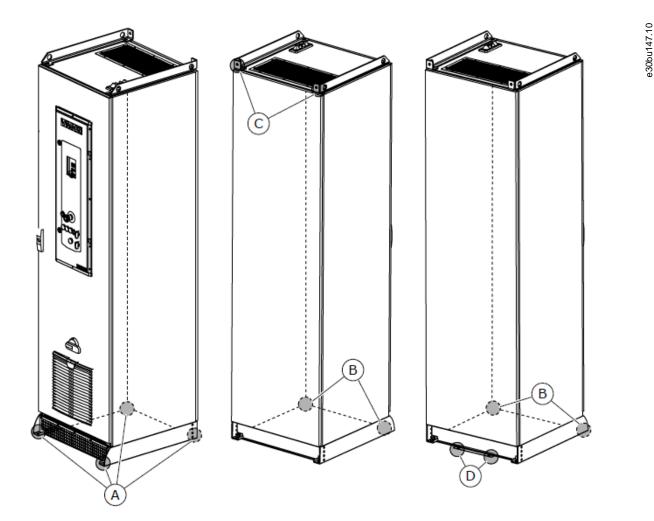


Abbildung 18: Luftzirkulation im Schaltschrank mit Rückkanaloption (Kanaladapterflansche nicht mit Option geliefert)

4.11.3 Befestigung des Schaltschranks am Boden


Context:

Es gibt drei Möglichkeiten, den Schaltschrank am Boden zu befestigen:

- Verwenden Sie die 4 Befestigungspunkte an der Unterseite des Sockels.
- Verwenden Sie die 2 Befestigungspunkte vorn an der Unterseite des Sockels und die 2 Befestigungspunkte oben an der Rückwand des Schaltschranks.
- Befestigen Sie die Befestigungskonsole zur Verwendung zunächst am Boden, indem Sie die Kante des Schaltschranksockels unter die Befestigungskonsole schieben. Befestigen Sie anschließend die 2 Bohrungen vorn an der Unterseite des Sockels.

Beispiel:

A Die 4 Befestigungspunkte an der Unterseite des Sockels	B Die 2 Befestigungspunkte vorn an der Unterseite des Sockels
C Die 2 Befestigungspunkte oben an der Rückwand des Schaltschranks	D Die 2 Befestigungspunkte in der Befestigungskonsole
SCHAILSCHRANKS	

Abbildung 19: Schaltschrank-Befestigungspunkte

5 Elektrische Installation

5.1 Sicherheitshinweise

Allgemeine Sicherheitshinweise finden Sie in 2.3 Sicherheitsmaßnahmen.

HINWEIS

ANWENDUNGEN MIT MEHREREN MOTOREN

Für Anwendungen mit mehreren Motoren benötigen Sie für einen Überlastungsschutz zusätzliche Schutzvorrichtungen wie einen Kurzschlussschutz oder einen thermischen Motorschutz zwischen Frequenzumrichter und den Motoren.

HINWEIS

KABELTYP UND NENNWERTE

In Bezug auf Querschnitte und Umgebungstemperaturen müssen alle Leitungen lokale und nationale Vorschriften erfüllen. Für Leistungsanschlüsse wird ein mindestens für 75 $^{\circ}$ C (167 $^{\circ}$ F) bemessenes Kupferkabel empfohlen.

⚠ WARNUNG ⚠

INDUZIERTE SPANNUNG

Von nebeneinander verlegten Motorausgangskabeln induzierte Spannung kann die Gerätekondensatoren aufladen, selbst wenn das Gerät ausgeschaltet und gesperrt ist. Wenn Motorausgangskabel nicht separat verlegt oder keine abgeschirmten Kabel verwendet werden, kann dies zum Tod oder zu schweren Verletzungen führen!

- Verlegen Sie Motorkabel getrennt.
- Verwenden Sie abgeschirmte Kabel.

A WARNUNG A

STROMSCHLAGGEFAHR

Der Frequenzumrichter kann einen Gleichstrom im Schutzleiter verursachen. Eine Nichtverwendung einer Fehlerstromschutzeinrichtung vom Typ B kann dazu führen, dass der Fehlerstromschutzschalter nicht den angestrebten Schutz bietet. Dies kann zum Tod und zu schweren Verletzungen führen!

- Wird ein Fehlerstromschutzschalter zum Schutz vor Stromschlag verwendet, ist an der Versorgungsseite nur eine Vorrichtung vom Typ B zulässig.

▲ VORSICHT ▲

MOTORÜBERLAST

Ein Motorüberlastschutz ist in der Werkseinstellung nicht enthalten. Für den nordamerikanischen Markt bietet die ETR-Funktion einen Motorüberlastschutz der Klasse 20 gemäß NEC. Wird die ETR-Funktion nicht eingestellt, so ist kein thermischer Motorüberlastschutz aktiviert und bei einer Motorüberhitzung kann es zu Sachschäden kommen.

Aktivieren Sie die ETR-Funktion durch Einstellung von Parameter 1-90 Thermischer Motorschutz auf [ETR Abschalt.] oder [ETR Warnung].

5.2 EMV-gerechte Installation

Befolgen Sie zur Durchführung einer EMV-gerechten Installation alle Anweisungen zur elektrischen Installation.

Stellen Sie zudem sicher, dass Sie die folgenden Maßnahmen ergreifen:

- Bei Verwendung von Relais, Steuerleitungen, Signalgeber, Feldbus oder Bremse verbinden Sie die Abschirmung an beiden Enden mit dem Gehäuse. Wenn die Erdung eine hohe Impedanz hat, rauscht oder Strom führt, unterbrechen Sie die Abschirmung an einem Ende, um Masseschleifen zu vermeiden.
- Führen Sie die Ableitströme mithilfe einer Montageplatte aus Metall zum Gerät zurück. Durch die Montageschrauben muss stets ein guter elektrischer Kontakt von der Montageplatte zum Frequenzumrichtergehäuse gewährleistet sein.
- Verwenden Sie immer abgeschirmte Motorausgangskabel. Eine Alternative dazu sind ungeschirmte Motorkabel in Metallrohren.
- Stellen Sie sicher, dass die Motorkabel und Anschlusskabel für Bremse so kurz wie möglich sind, um das Störungsniveau des gesamten Systems zu reduzieren.
- · Sie dürfen Steuer- und Buskabel nicht gemeinsam mit Anschlusskabeln für Motor und Bremse verlegen.
- Für Kommunikations- und Steuerleitungen müssen Sie die jeweiligen besonderen Kommunikationsprotokollstandards beachten.
 So müssen Sie für USB beispielsweise abgeschirmte Kabel verwenden, während Sie für RS485/Ethernet abgeschirmte oder ungeschirmte UTP-Kabel verwenden können.
- Stellen Sie sicher, dass alle Steuerklemmenverbindungen den PELV-Anforderungen (PELV: Schutzkleinspannung Protective extra low voltage) entsprechen.

HINWEIS

VERDRILLTE ABSCHIRMUNGSENDEN (PIGTAILS)

Verdrillte Abschirmungsenden erhöhen die Impedanz der Abschirmung bei höheren Frequenzen, was die Wirksamkeit der Abschirmung stark reduziert und den Ableitstrom erhöht.

Verwenden Sie hierzu integrierte Schirmbügel anstelle von verdrillten Abschirmungsenden (Pigtails).

HINWEIS

ABGESCHIRMTE KABEL

Wenn keine abgeschirmten Kabel oder Metallrohre verwendet werden, erfüllen das Gerät und die Installation nicht die regulatorischen Vorschriften der Grenzwerte für Funkfrequenzemissionen.

HINWEIS

EMV-STÖRUNGEN

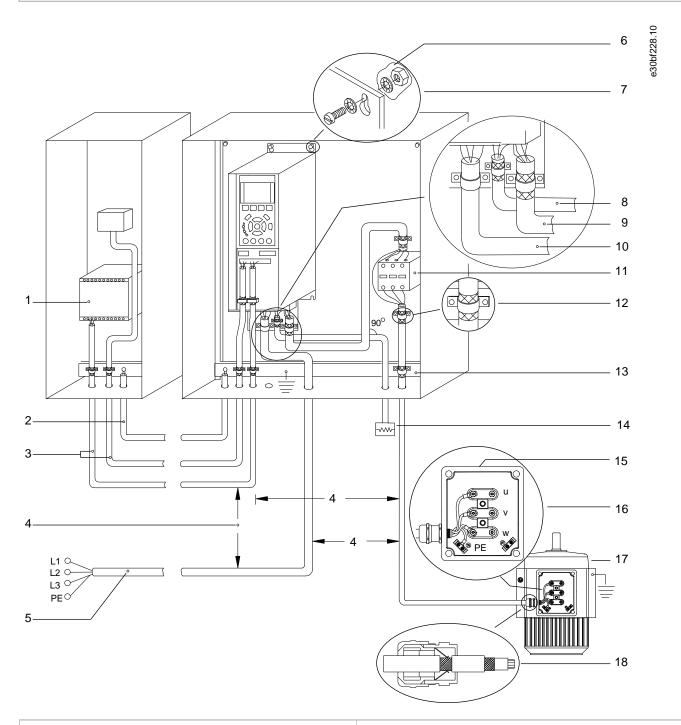
Die Nichtbeachtung dieser Vorgabe kann zu nicht vorgesehenem Verhalten oder reduzierter Leistung der Anlage führen.

- Verwenden Sie abgeschirmte Kabel für Motor- und Steuerkabel.
- Halten Sie einen Mindestabstand von 200 mm (7,9 in.) zwischen Netzanschluss, Motorkabeln sowie Steuerleitungen ein.

HINWEIS

INSTALLATION IN GROSSER HÖHENLAGE

Es besteht die Gefahr von Überspannung. Die Isolierung zwischen Komponenten und kritischen Teilen ist ggf. nicht ausreichend und entspricht möglicherweise nicht den PELV-Anforderungen.

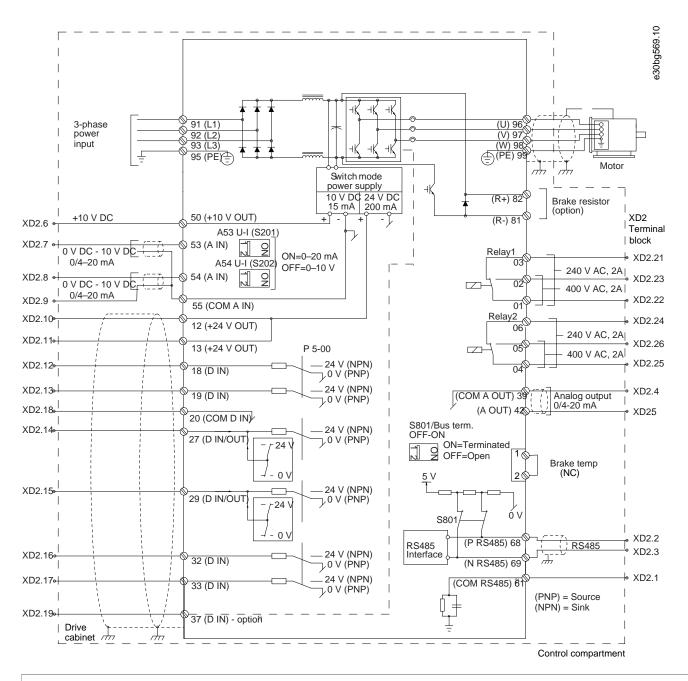

 Verwenden Sie externe Schutzeinrichtungen oder eine galvanische Trennung. Kontaktieren Sie Danfoss bei Installationen in einer Höhe von über 2000 m (6500 ft) hinsichtlich der PELV-Konformität.

HINWEIS

EINHALTUNG VON PELV (SCHUTZKLEINSPANNUNG – PROTECTIVE EXTRA LOW VOLTAGE)

Verhindern Sie Stromschlag, indem Sie zur Versorgung PELV (Schutzkleinspannung – Protective extra low voltage) verwenden und die örtlichen sowie nationalen PELV-Vorschriften einhalten.

- 1 Speicherprogrammierbare Steuerung (SPS)
- 2 Minimum 16 mm² (6 AWG) Potenzialausgleich

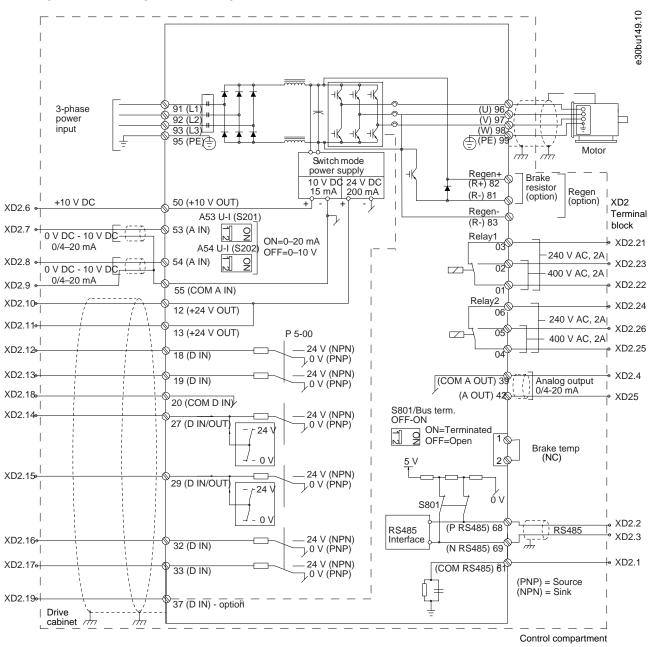


3	Steuerleitungen	4 Mindestens 200 mm (7,9 in) zwischen Steuerleitungen, Motorkabeln und Netzkabeln.
5	Netzversorgung	6 Freiliegende (nicht lackierte) Oberfläche
7	Sternscheiben	8 Anschlusskabel für Bremse (abgeschirmt)
9	Motorkabel (abgeschirmt)	10 Netzkabel (ungeschirmt)
11	Ausgangsschütz usw.	12 Kabelisolierung, abisoliert
13	Bezugserde-Sammelschiene. Beachten Sie nationale und örtliche Vorschriften für die Schaltschrankerdung.	14 Bremswiderstand
15	Metallkasten	16 Anschluss zum Motor
17	Motor	18 EMV-Kabelverschraubung

Abbildung 20: Beispiel für EMV-gerechte Installation

5.3 Anschlussdiagramm für die schaltschrankbasierten Frequenzumrichter D9h und D10h

¹ Klemme 37 (optional) wird für die Funktion Safe Torque Off (STO) verwendet. Installationsanweisungen finden Sie in der VLT Bedienungsanleitung zu Safe Torque Off.


Abbildung 21: Anschlussdiagramm des Grundgeräts für die Baugrößen D9h und D10h

5.4 Anschlussdiagramm für die schaltschrankbasierten Frequenzumrichter E5h und E6h

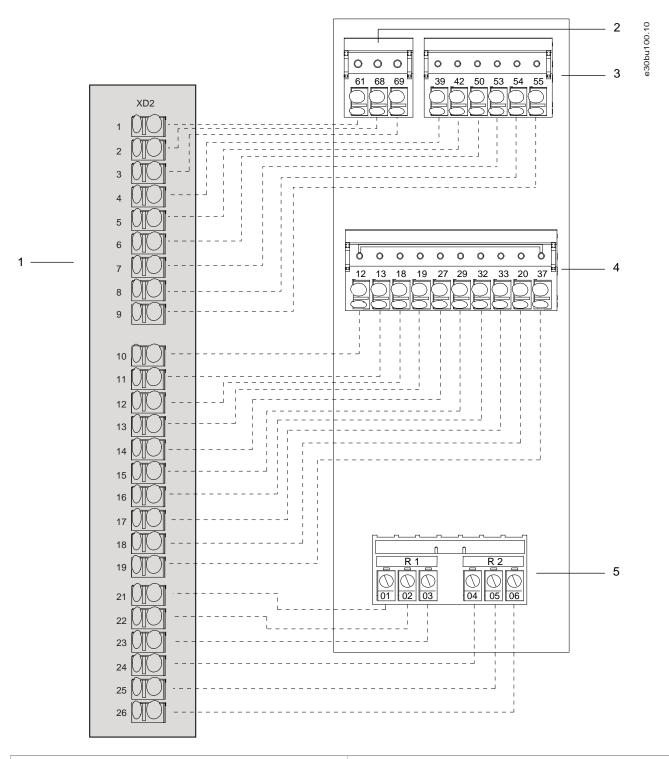

1 Klemme 37 (optional) wird für die Funktion Safe Torque Off (STO) verwendet. Installationsanweisungen finden Sie in der VLT Bedienungsanleitung zu Safe Torque Off.

Abbildung 22: Anschlussdiagramm für die Baugrößen E5h und E6h

5.5 Anschlussplan-Querverweise

- 1 Für den Benutzer zugängliche Klemmen (Steuerfach)
- 3 Analogeingangs-/ausgangsklemmen (Frequenzumrichtermodul)

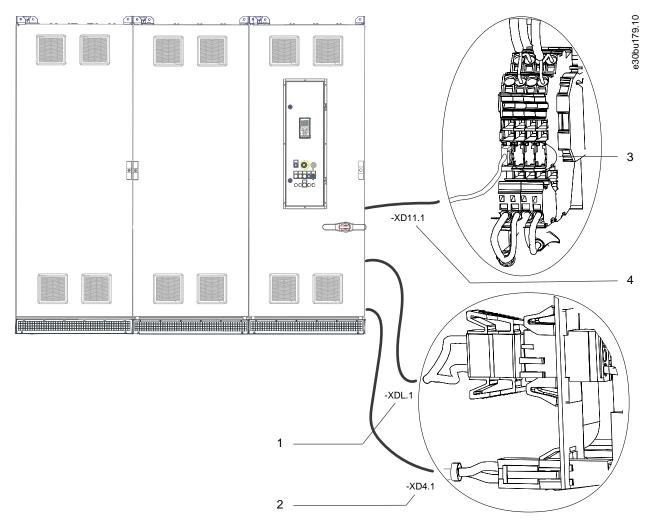
- 2 Klemmen für die serielle Kommunikation (Frequenzumrichtermodul)
- 4 Digitaleingangs-/ausgangsklemmen (Frequenzumrichtermodul)

5 Relaisklemmen (Frequenzumrichtermodul)

Abbildung 23: Serielle Kommunikation, Serielle Schnittstelle, Digitaleingang/-ausgang, Analogeingang/-ausgang und Relaisklemmen-Querverweise

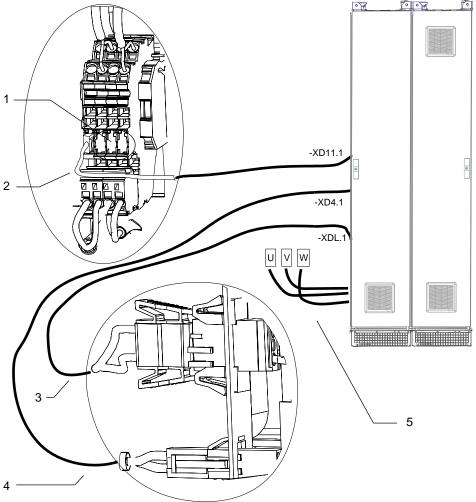
5.6 Kabelbäume in Teillieferung

5.6.1 Anschluss der Kabelbäume


Context:

Vorgehensweise

- Schließen Sie die Kabelbäume entsprechend der Trennung des schaltschrankbasierten Frequenzumrichters an. Jeder Kabelbaum im schaltschrankbasierten Frequenzumrichter ist gekennzeichnet. Die Schildnamen und Beschreibungen entnehmen Sie den Abbildungen in diesem Abschnitt.
 - A Schließen Sie den Kabelbaum für die Lüfterversorgung an.
 - B Schließen Sie den Kabelbaum für den thermischen Schutz an.
 - C Schließen Sie die Kabelbäume für das PHF-Schütz an, falls vorhanden.
 - D Schließen Sie den Kabelbaum für die Schaltschrankheizung an, falls vorhanden.
- 2. Schließen Sie die Ausgangsfilterkabel an. Siehe die Abbildungen in diesem Abschnitt.
 - Für die Sinusfilteroption ist 1 Kabelsatz für jeden Sinusfilter vorhanden. Ein Ende jedes Kabels ist bereits mit dem Filter verbunden, das andere Ende ist im Sinusfilter-Schrank gebündelt. Schließen Sie die losen Kabelenden des Sinusfilters an die Motorklemmen im Schaltschrank des Frequenzumrichters an.
 - Bei der dU/dt-Filteroption werden die losen Filterkabel im Schaltschrank des dU/dt-Filters gebündelt. Schließen Sie die losen Kabelenden an die Motorklemmen im Schaltschrank des Frequenzumrichters an.
- 3. Schließen Sie die Eingangsfilterkabel an. Siehe die Abbildungen in diesem Abschnitt.
 - Bei der passiven Oberschwingungsfilter-Option (Passive Harmonic Filter, PHF) werden die Filterkabel im Schaltschrank des Eingangsfilter gebündelt. Schließen Sie zunächst die nicht angeschlossenen PHF-Kabelenden (R/S/T) an die entsprechenden Klemmen im Eingangsleistungs-Optionsschrank an. Schließen Sie anschließend die nicht angeschlossenen PHF-Kabelenden (L1R/L2S/L3T) an den R/S/T-Anschlüssen im Frequenzumrichter-Schaltschrank an.
 - Bei der Netzdrossel-Option werden die Netzdrosselkabel im Schaltschrank des Eingangsfilter gebündelt. Schließen Sie zunächst die nicht angeschlossenen Netzdrossel-Kabelenden (R/S/T) an die entsprechenden Klemmen im Eingangsleistungs-Optionsschrank an. Schließen Sie anschließend die nicht angeschlossenen Netzdrossel-Kabelenden (L1R/L2S/L3T) an den R/S/T-Anschlüssen im Frequenzumrichter-Schaltschrank an.



5.6.2 D10h-Kabelbaum

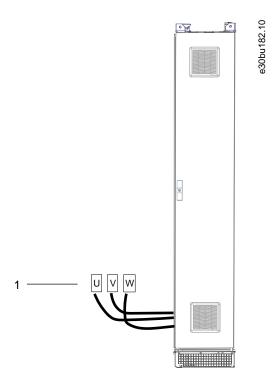
1 Zwischenkreiskabelbaum an Lüfterversorgung in Ausgangsfilterschrank	2 Schaltschrankheizungs-Versorgungskabelbaum an Ausgangsfilterschrank
3 Zusätzliche Klemmenanschlüsse	4 Kabelbaum für thermischen Schutz an Ausgangsfilterschrank

Abbildung 24: Elektrische Anschlüsse bei Teillieferung (Eingangsfilterschrank + Eingangsleistungs-Optionsschrank + D10h-Frequenzumrichter-Schaltschrank)

2 Kabelbaum für thermischen Schutz an Frequenzumrichter-

3 Zwischenkreiskabelbaum an Lüfterversorgung in Frequenzumrichter-Schaltschrank

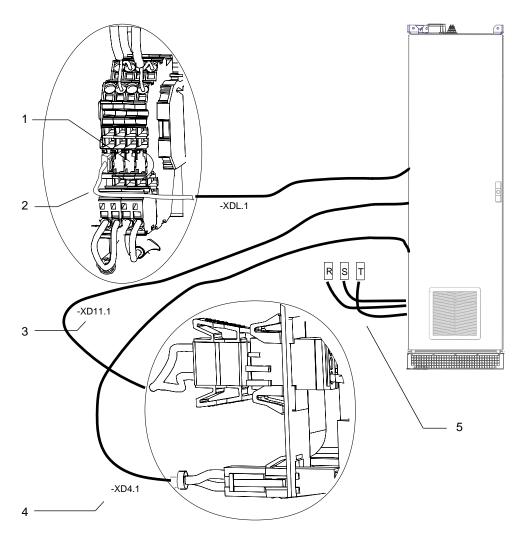
1 Zusätzliche Klemmenanschlüsse


- 5 Motorkabel (U/V/W) an Motorklemmen (U/V/W) in Frequenzumrichter-Schaltschrank
- 4 Schaltschrankheizungs-Versorgungskabelbaum an Frequenzumrichter-Schaltschrank

Schaltschrank

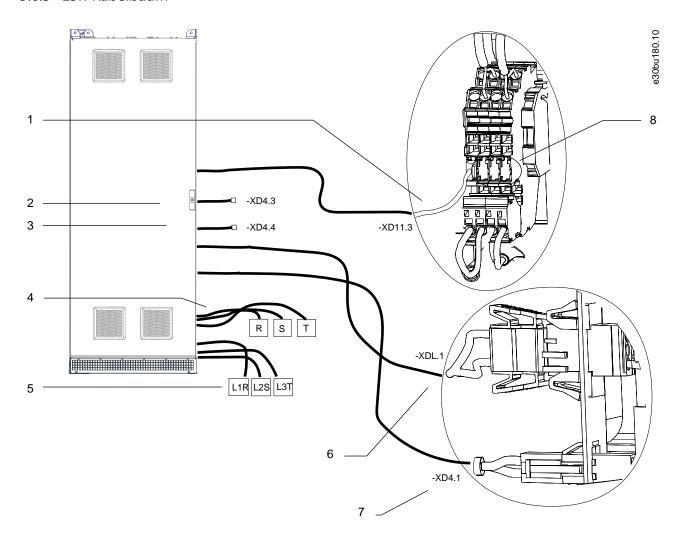
Abbildung 25: Elektrische Anschlüsse bei Teillieferung (dU/dt-Schrank + Schaltschrank mit Zugang von oben)

e30bu181.10



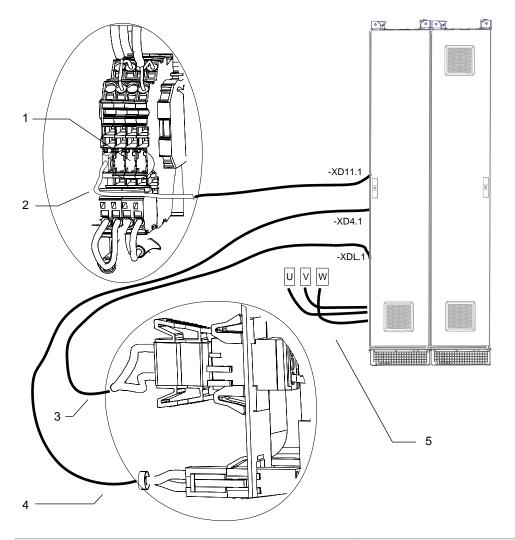
1 Motorkabel (U/V/W) an Motorklemmen (U/V/W) in Frequenzumrichter-Schaltschrank

Abbildung 26: Elektrische Anschlüsse bei Teillieferung (Schaltschrank mit Zugang von oben)



1 Zusätzliche Klemmenanschlüsse	Kabelbaum für thermischen Schutz an Frequenzumrichter- Schaltschrank
3 Zwischenkreiskabelbaum an Lüfterversorgung in Frequenzumrichter-Schaltschrank	4 Schaltschrankheizungs-Versorgungskabelbaum an
5 Motorkabel (U/V/W) an Motorklemmen (U/V/W) in Frequenzumrichter-Schaltschrank	Frequenzumrichter-Schaltschrank

Abbildung 27: Elektrische Anschlüsse bei Teillieferung (D10h-Sinusfiltergehäuse)


5.6.3 E5h-Kabelbaum

1	Kabelbaum für thermischen Schutz an Eingangsleistungs- Optionsschrank	2	Versorgungskabelbaum für PHF-Schütz 1 an Eingangsleistungs-Optionsschrank (nur mit PHF-Option)
3	Versorgungskabelbaum für PHF-Schütz 2 an Eingangsleistungs-Optionsschrank (nur mit PHF-Option)	4	Eingangsklemmenkabel (R/S/T) an Netzklemmen (R/S/T) im Eingangsleistungs-Optionsschrank
5	Ausgangsklemmenkabel (L1R/L2S/L3T) an Netzklemmen (R/S/T) im Frequenzumrichter-Schaltschrank	6	Zwischenkreiskabelbaum an Lüfterversorgung in Eingangsleistungs-Optionsschrank
7	Versorgungskabelbaum für Schaltschrankheizung an Eingangsleistungs-Optionsschrank	8	Zusätzliche Klemmenanschlüsse

Abbildung 28: Elektrische Anschlüsse bei Teillieferung (Eingangsfilterschrank)

e30bu181.10

Zusätzliche Klemmenanschlüsse
 Zwischenkreiskabelbaum an Lüfterversorgung in Frequenzumrichter-Schaltschrank
 Motorkabel (U/V/W) an Motorklemmen (U/V/W) in Frequenzumrichter-Schaltschrank
 Kabelbaum für thermischen Schutz an Frequenzumrichter-Schaltschrank
 Schaltschrankheizungs-Versorgungskabelbaum an Frequenzumrichter-Schaltschrank

Abbildung 29: Elektrische Anschlüsse bei Teillieferung (dU/dt-Schrank + Schaltschrank mit Zugang von oben)

1 Motorkabel (U/V/W) an Motorklemmen (U/V/W) in Frequenzumrichter-Schaltschrank

Abbildung 30: Elektrische Anschlüsse bei Teillieferung (Schaltschrank mit Zugang von oben)

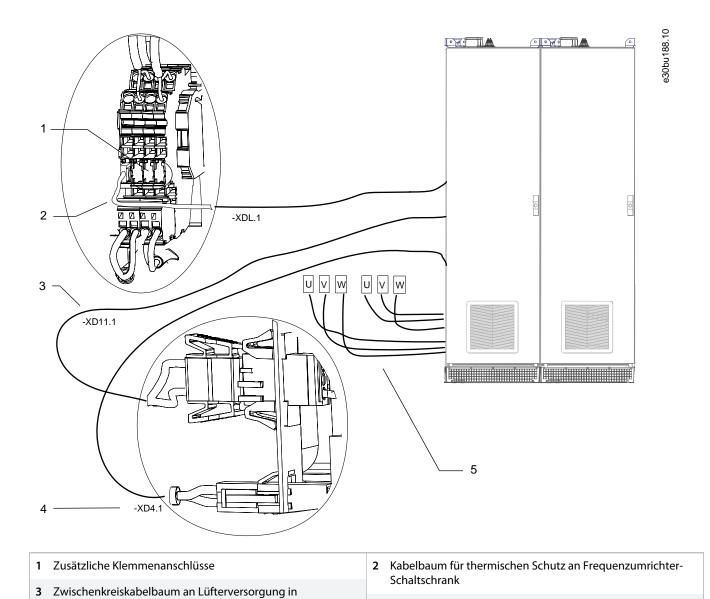
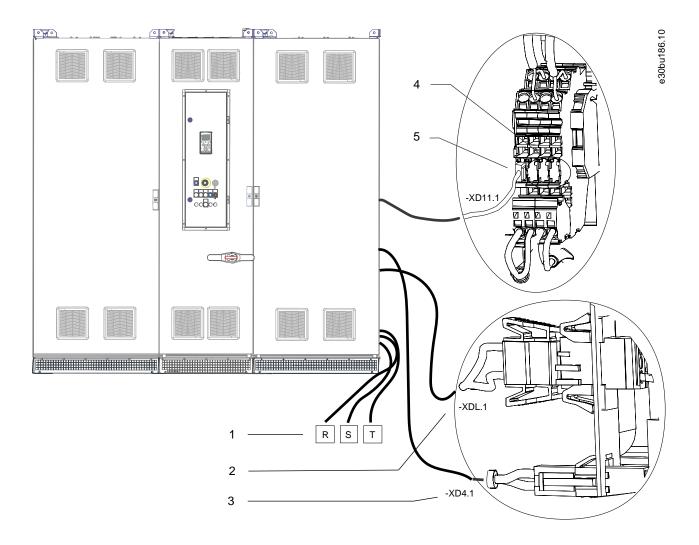


Abbildung 31: Elektrische Anschlüsse bei Teillieferung (E5h/E6h-Sinusfiltergehäuse)

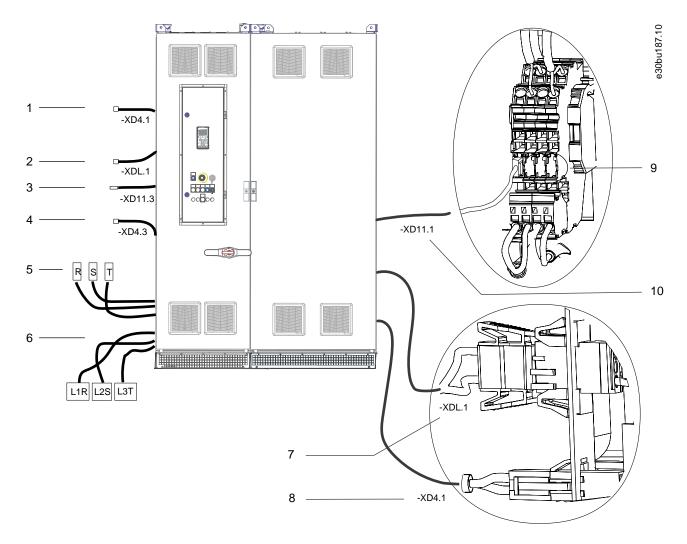
Frequenzumrichter-Schaltschrank


Frequenzumrichter-Schaltschrank

5 Motorkabel (U/V/W) an Motorklemmen (U/V/W) in

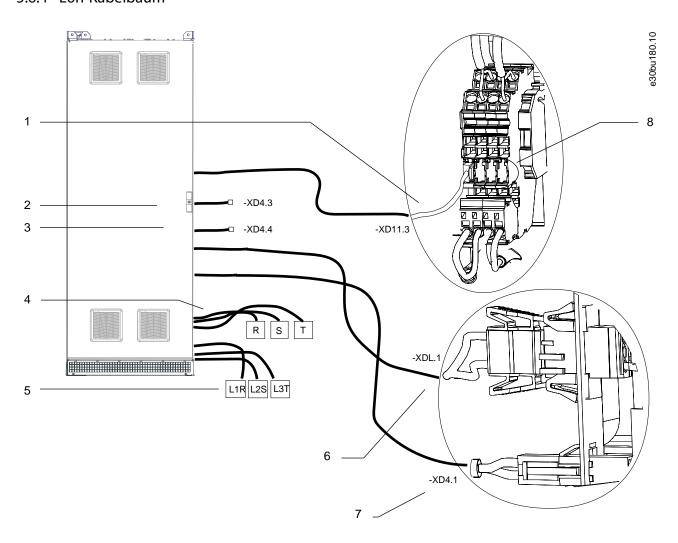
4 Schaltschrankheizungs-Versorgungskabelbaum an

Frequenzumrichter-Schaltschrank



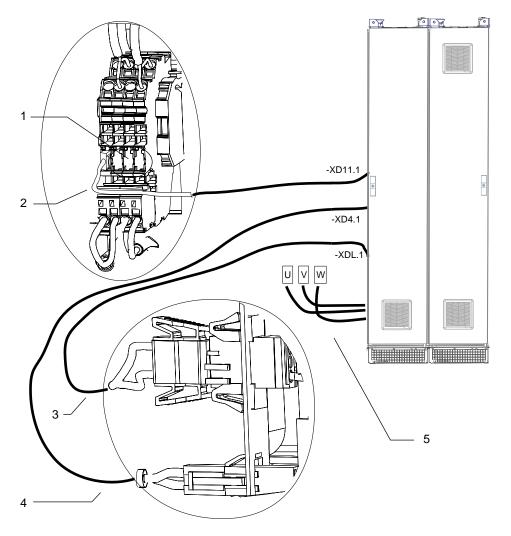
1	Motorkabel (U/V/W) an Motorklemmen (U/V/W) in Ausgangsfilterschrank	2	Zwischenkreiskabelbaum an Lüfterversorgung in Ausgangsfilterschrank
3	Schaltschrankheizungs-Versorgungskabelbaum an Ausgangsfilterschrank	4	Zusätzliche Klemmenanschlüsse
5	Kabelbaum für thermischen Schutz an Ausgangsfilterschrank		

Abbildung 32: Elektrische Anschlüsse bei Teillieferung (Eingangsfilterschrank + Eingangsleistungs-Optionsschrank + E5h-Frequenzumrichter-Schaltschrank)



1	Schaltschrankheizungs-Versorgungskabelbaum an Eingangsfilterschrank	2	Zwischenkreiskabelbaum an Lüfterversorgung in Eingangsfilterschrank
3	Kabelbaum für thermischen Schutz an Eingangsfilterschrank	4	Versorgungskabelbaum für PHF-Schütz 1 an Eingangsfilterschrank (nur mit PHF-Option)
5	Netzkabel (R/S/T) an Eingangsklemmen (R/S/T) im Eingangsleistungs-Optionsschrank	6	Netzkabel (L1R/L2S/L3T) an Ausgangsklemmen (L1R/L2S/L3T)
7	Zwischenkreiskabelbaum an Lüfterversorgung an Ausgangsfilterschrank	8	in Eingangsfilterschrank Schaltschrankheizungs-Versorgungskabelbaum an
9	Verfügbare Klemmenanschlüsse		Ausgangsfilterschrank
		10	Nabelbaum für thermischen Schutz an Ausgangsfilterschrank

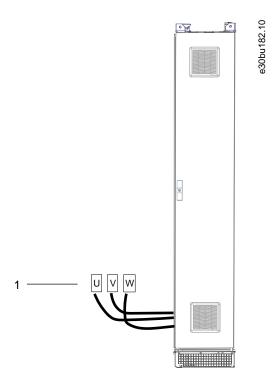
Abbildung 33: Elektrische Anschlüsse bei Teillieferung (Eingangsleistungs-Optionsschrank + E5h-Frequenzumrichter-Schaltschrank)



5.6.4 E6h-Kabelbaum

1	Kabelbaum für thermischen Schutz an Eingangsleistungs- Optionsschrank	2	Versorgungskabelbaum für PHF-Schütz 1 an Eingangsleistungs-Optionsschrank (nur mit PHF-Option)
3	Versorgungskabelbaum für PHF-Schütz 2 an Eingangsleistungs-Optionsschrank (nur mit PHF-Option)	4	Eingangsklemmenkabel (R/S/T) an Netzklemmen (R/S/T) im Eingangsleistungs-Optionsschrank
5	Ausgangsklemmenkabel (L1R/L2S/L3T) an Netzklemmen (R/S/T) im Frequenzumrichter-Schaltschrank	6	Zwischenkreiskabelbaum an Lüfterversorgung in Eingangsleistungs-Optionsschrank
7	Versorgungskabelbaum für Schaltschrankheizung an Eingangsleistungs-Optionsschrank	8	Zusätzliche Klemmenanschlüsse

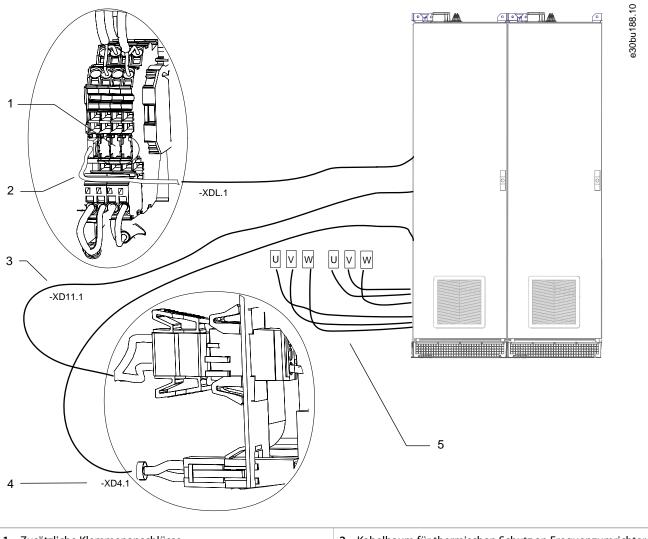
Abbildung 34: Elektrische Anschlüsse bei Teillieferung (Eingangsfilterschrank)



e30bu181.10

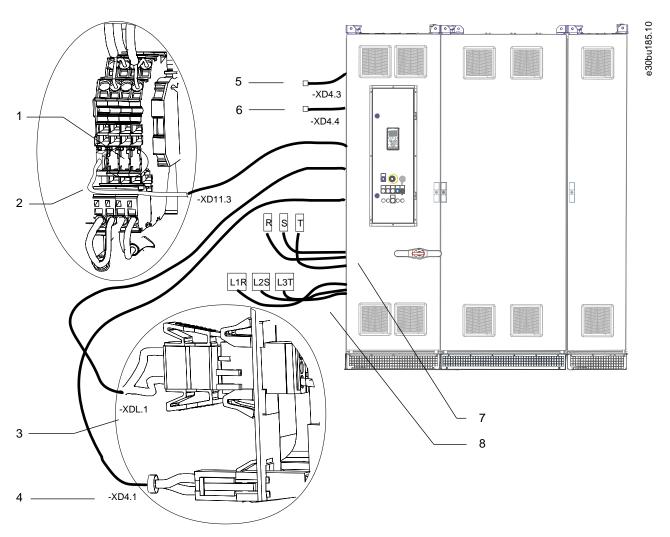
Zusätzliche Klemmenanschlüsse
 Zwischenkreiskabelbaum an Lüfterversorgung in Frequenzumrichter-Schaltschrank
 Kabelbaum für thermischen Schutz an Frequenzumrichter-Schaltschrank
 Schaltschrankheizungs-Versorgungskabelbaum an Frequenzumrichter-Schaltschrank
 Motorkabel (U/V/W) an Motorklemmen (U/V/W) in Frequenzumrichter-Schaltschrank

Abbildung 35: Elektrische Anschlüsse bei Teillieferung (dU/dt-Schrank + Schaltschrank mit Zugang von oben)



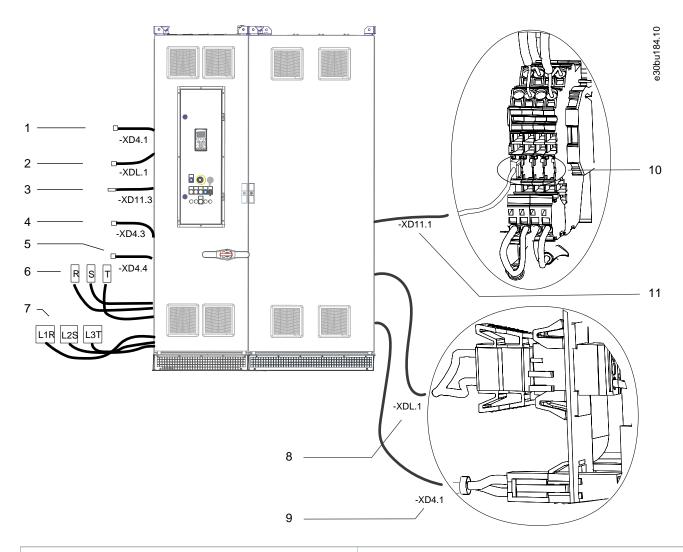
1 Motorkabel (U/V/W) an Motorklemmen (U/V/W) in Frequenzumrichter-Schaltschrank

Abbildung 36: Elektrische Anschlüsse bei Teillieferung (Schaltschrank mit Zugang von oben)



1 Zusätzliche Klemmenanschlüsse	2 Kabelbaum für thermischen Schutz an Frequenzumrichter-
3 Zwischenkreiskabelbaum an Lüfterversorgung in	Schaltschrank
Frequenzumrichter-Schaltschrank	4 Schaltschrankheizungs-Versorgungskabelbaum an
5 Motorkabel (U/V/W) an Motorklemmen (U/V/W) in	Frequenzumrichter-Schaltschrank
Frequenzumrichter-Schaltschrank	

Abbildung 37: Elektrische Anschlüsse bei Teillieferung (E5h/E6h-Sinusfiltergehäuse)



1	Zusätzliche Klemmenanschlüsse	2	Kabelbaum für thermischen Schutz an Eingangsfilterschrank
3	Zwischenkreiskabelbaum an Lüfterversorgung in Eingangsfilterschrank	4	Schaltschrankheizungs-Versorgungskabelbaum an Eingangsfilterschrank
5	Versorgungskabelbaum für PHF-Schütz 1 an Eingangsfilterschrank (nur mit PHF-Option)	6	Versorgungskabelbaum für PHF-Schütz 2 an Eingangsfilterschrank (nur mit PHF-Option)
7	Netzkabel (R/S/T) an Eingangsklemmen (R/S/T) im Eingangsleistungs-Optionsschrank	8	Netzkabel (L1R/L2S/L3T) an Ausgangsklemmen (L1R/L2S/L3T) in Eingangsfilterschrank

Abbildung 38: Elektrische Anschlüsse bei Teillieferung (Eingangsleistungs-Optionsschrank + E6h-Frequenzumrichter-Schaltschrank + Schaltschrank mit Zugang von oben)

- 1 Schaltschrankheizungs-Versorgungskabelbaum an Eingangsfilterschrank
- 3 Kabelbaum für thermischen Schutz in Eingangsfilterschrank
- 5 Versorgungskabelbaum für PHF-Schütz 2 an PHF-Schrank (nur mit PHF-Option)
- 7 Netzkabel (L1R/L2S/L3T) an Ausgangsklemmen (L1R/L2S/L3T) in Eingangsfilterschrank
- 9 Schaltschrankheizungs-Versorgungskabelbaum an Ausgangsfilterschrank
- 11 Kabelbaum für thermischen Schutz an Ausgangsfilterschrank

- 2 Zwischenkreiskabelbaum an Lüfterversorgung an Eingangsfilterschrank
- 4 Versorgungskabelbaum für PHF-Schütz 1 an PHF-Schrank (nur mit PHF-Option)
- 6 Netzkabel R, S, T an Eingangsklemmen (R/S/T) im Eingangsleistungs-Optionsschrank
- 8 Zwischenkreiskabelbaum an Lüfterversorgung in Ausgangsfilterschrank
- 10 Verfügbare Klemmenanschlüsse

Abbildung 39: Elektrische Anschlüsse bei Teillieferung (Eingangsleistungs-Optionsschrank + E6h-Frequenzumrichter-Schaltschrank)

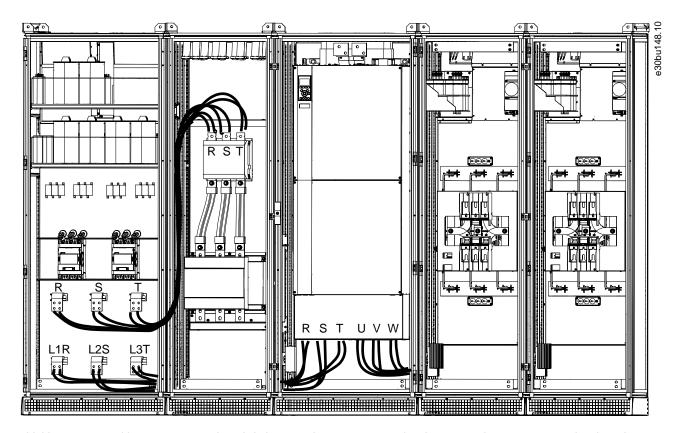
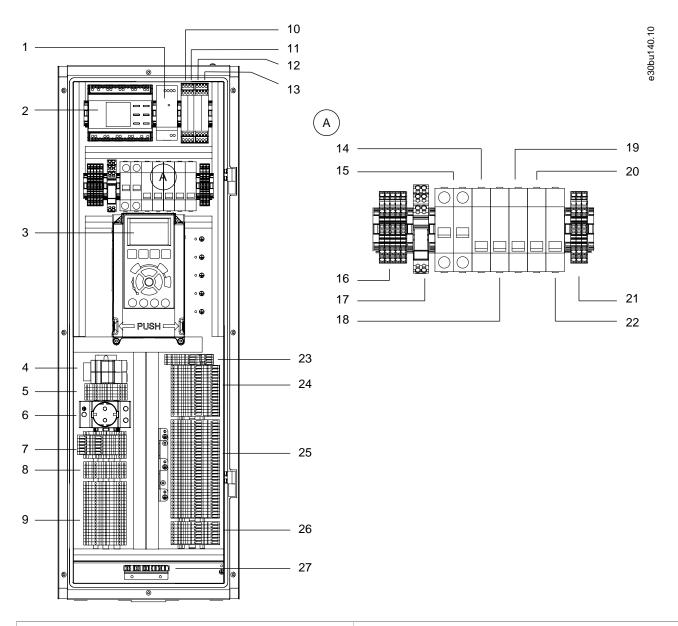


Abbildung 40: Anschluss von Motor- und Netzkabeln (Beispiel zeigt einen PHF-Schrank + Eingangsleistungs-Optionsschrank + E6h-Frequenzumrichter-Schaltschrank + Sinusfilter-Schrank)

5.7 Verkabelung des Steuerfachs

5.7.1 Sicherheitsmaßnahmen

⚠ WARNUNG **⚠**


HOCHSPANNUNG

Der Netztrennschalter trennt nicht die externe Spannungsversorgung. Wenn die externe Spannungsversorgung nicht unterbrochen wird, bevor Komponenten im Steuerfach berührt werden, kann dies zum Tod oder zu schweren Verletzungen führen!

- Installation, Inbetriebnahme und Wartung der Frequenzumrichter dürfen ausschließlich von qualifiziertem Personal vorgenommen werden.
- Trennen Sie die externe Spannungsversorgung.

5.7.2 Ansicht des Steuerfach-Innenraums

1 24 V DC-Versorgung (-TB7)	2 Isolationsüberwachung (-BE1)
3 Bedieneinheit (LCP). Siehe <u>3.6.3 Bedieneinheit (LCP)</u> .	4 RJ45-Klemmenblöcke 1 und 2 (-RJ45_1 und RJ45_2)
5 Schutzsatz für Klemmenblöcke (-XD11)	6 Steckdose (-XD10)
7 Klemmenblock des Schütz-Steuerteils (-XD0)	8 Klemmenblock der Schaltschrankheizung (-XD4)
9 Kundenspezifischer Klemmenblock/Klemmenblock der Option C0 (-XDW)	10 Anzeigerelais der thermischen Abschaltung, Eingangsleistungs-Optionsschrank (-KFJ.1)
11 Anzeigerelais der thermischen Abschaltung, Ausgangsfilter- Schaltschrank (-KFJ.2)	12 Anzeigerelais der thermischen Abschaltung, Eingangsfilter- Schaltschrank (-KFJ.3)
13 Schützrelais zur PHF-Kondensatorabschaltung (-QAF)	14 +24 V DC-Versorgungsschutz MCB (-FC7)

15	AC-Schaltungsschutz MCB (-FC6)	16	Klemmenblock der AC-Verteilungsschaltung (-XD1)
17	Hilfsrelais für Heizung (-QAM)	18	Schütz-Steuerteil Schutz MCB (-FC10)
19	Schaltschrankleuchte/Steckdose Schutz MCB (-FCC)	20	Schaltschrankheizung(en) Schutzschaltung MCB (-FCE)
21	Klemmenblock der DC-Verteilungsschaltung (-XD3)	22	Motorheizung Schutzschaltung MCB (-FCN)
23	AC-Lüfterversorgung Klemmenblocksatz (-XDY)	24	Option C2 Klemmenblocksatz (-XDF)
25	Basis-I/O Klemmenblock und Option A, B, D Karte Klemmenblocksatz (-XD2)	26	Türkomponenten Klemmenblocksatz (-XDJ)
27	Erdungsklemme für den Abschirmungsabschluss von Kabeln.		

Abbildung 41: Layout des Steuerfach-Innenraums mit allen Optionen

5.7.3 Steuerklemmen

Tabelle 25: Klemmen für die serielle Kommunikation

XD2- Klemme	Parameter	Werksein- stellung	Beschreibung
1	-	_	Integrierter RC-Filter für Kabelschirm. Verwendet nur zum Anschluss einer Abschirmung im Falle von Problemen mit der elektromagnetischen Verträglichkeit (EMV).
2	Parametergruppe 8-3* Ser. FC-Schnittst.	_	RS485-Schnittstelle. Ein Schalter (BUS TER.) auf der Steuerkarte dient zum Zuschalten des Busabschlusswiderstands. Siehe <i>Abbildung 5.22</i> .
3	Parametergruppe 8-3* Ser. FC-Schnittst.	_	

Tabelle 26: Klemmenbeschreibung Digitalein-/-ausgänge

XD2- Klemme	Parameter	Werkseinstel- lung	Beschreibung
10, 11	-	+24 V DC	24 V DC-Versorgungsspannung für Digitaleingänge und externe Messwandler. Maximaler Ausgangsstrom von 200 mA für alle 24-V-Lasten.
12	Parameter 5-10 Klemme 18 Digitaleingang	[8] Start	Digitaleingänge.
13	Parameter 5-11 Klemme 19 Digitaleingang	[10] Reversierung	
16	Parameter 5-14 Klemme 32 Digitaleingang	[0] Ohne Funk- tion	
17	Parameter 5-15 Klemme 33 Digitaleingang	[0] Ohne Funk- tion	

XD2- Klemme	Parameter	Werkseinstel- lung	Beschreibung
14	Parameter 5-12 Klemme 27 Digitaleingang	[2] Motorfreilauf (inv.)	Für Digitaleingang und -ausgang. In Werkseinstellung als Eingang definiert.
15	Parameter 5-13 Klemme 29 Digitaleingang	[14] Festdrehzahl JOG	
18	-	-	Bezugspotenzial für Digitaleingänge und 0-V-Potenzial für 24-V-Spannungsversorgung.
19	-	STO	Wenn die Funktion Safe Torque Off (STO) nicht verwendet wird, benötigen Sie Drahtbrücken zwischen Klemme 10 (oder 11) und Klemme 19 Diese Konfiguration erlaubt, den Frequen- zumrichter mit den vorgegebenen Parameterwerten der Werk- seinstellung zu betreiben.

Tabelle 27: Klemmenbeschreibung Analogein-/-ausgänge

XD2- Klemme	Parameter	Werkseinstel- lung	Beschreibung
4	_	_	Bezugspotential für Analogausgang.
5	Parameter 6-50 Klemme 42 Ausgang	[0] Ohne Funk- tion	Programmierbarer Analogausgang. 0-20 mA oder 4-20 mA bei maximal 500 Ω .
6	-	+10 V DC	10 V DC Versorgungsspannung am Analogausgang für Potenziometer oder Thermistor. Maximal 15 mA.
7	Parametergruppe 6-1* Ana- logeingang 1	Sollwert	Analogeingang. Für Spannung (V) oder Strom (mA).
8	Parametergruppe 6-2* Ana- logeingang 2	Feedback	
9	-	_	Bezugspotenzial für Analogeingang

5.7.4 Relaisklemmen

Tabelle 28: Relaisklemme Beschreibungen

XD2-Klemme	Parameter	Werkseinstellung	Beschreibung
21, 22, 23	Parameter 5-40 Relaisfunktion [0]	[0] Ohne Funktion	Wechselkontakt-Relaisausgänge. Für Wechsel- oder
24, 25, 26	Parameter 5-40 Relaisfunktion [1]	[0] Ohne Funktion	Gleichspannung.

5.7.5 Optionskartenklemmen

Die Optionskarten erweitern den Funktionsumfang von Frequenzumrichtern und bieten viele unterschiedliche Schnittstellen für Automationssysteme. Wenn die Optionskarten im Typencode angegeben sind, werden sie in den Steckplätzen A, B, C und D der Steuerkarte im Frequenzumrichtermodul montiert. Die Verkabelung der Optionskarte wird zu einem Klemmenblock im Steuerfach verlegt. Weitere Informationen finden Sie in der Installations-/Betriebsanleitung der jeweiligen Optionskarte.

HINWFIS

OPTIONSKARTENINSTALLATION

Wenn die Optionskarte unter Verwendung des Typencodes zusammen mit dem Frequenzumrichter bestellt wird, werden die Optionskarte und deren Verkabelung werkseitig installiert. Wird die Option separat bestellt, ist der Kunde für die Installation der Optionskarte und der Verkabelungserweiterungen im Schaltschrank verantwortlich.

Tabelle 29: Option A Klemmenanschlüsse

Optionskartenklemme	Entsprechende Klemme im Steuerfach
1	XD2.40
2	XD2.41
3	XD2.42
4	XD2.43
5	XD2.44

Tabelle 30: Option B Klemmenanschlüsse

Optionskartenklemme	Entsprechende Klemme im Steuerfach
1	XD2.46
2	XD2.47
3	XD2.48
4	XD2.49
5	XD2.50
6	XD2.51
7	XD2.52
8	XD2.53
9	XD2.54
10	XD2.55
11	XD2.56
12	XD2.57

Tabelle 31: Option C1 Klemmenanschlüsse

Optionskartenklemme	Entsprechende Klemme im Steuerfach
X46.1	XDF.1
X46.2	XDF.2
X46.3	XDF.3
X46.4	XDF.4
X46.5	XDF.5

Optionskartenklemme	Entsprechende Klemme im Steuerfach
X46.6	XDF.6
X46.7	XDF.7
X46.8	XDF.8
X46.9	XDF.9
X46.10	XDF.10
X46.11	XDF.11
X46.12	XDF.12
X46.13	XDF.13
X46.14	XDF.14
X58.1	XDF.15
X58.2	XDF.16
X45.1	XDF.17
X45.2	XDF.18
X45.3	XDF.19
X45.4	XDF.20
X47.1	XDF.21
X47.2	XDF.22
X47.3	XDF.23
X47.4	XDF.24
X47.5	XDF.25
X47.6	XDF.26
X47.7	XDF.27
X47.8	XDF.28
X47.9	XDF.29
X47.10	XDF.30
X47.11	XDF.31
X47.12	XDF.32

Tabelle 32: Option D Klemmenanschlüsse

Optionskartenklemme	Entsprechende Klemme im Steuerfach
35	XD2.28
36	XD2.29

5.7.6 Übersicht über die Verkabelung von Optionen

5.7.6.1 Zusatzversorgungsklemmen

Tabelle 33: Zusatzversorgungscodes

Zeichenposition	Optionscode	Beschreibung
21	1	230 V AC extern
	5	230 V AC extern + 24 V DC intern
	6	120 V AC extern
	9	120 V AC extern + 24 V DC intern

Die Zusatzverosrgungsklemmenoption bietet eine externe Spannungsversorgung zur Klemme –XD1.1. Die externe Versorgung muss über einen Kurzschlussschutz verfügen. Die Leistung der externen Versorgung hängt von den anderen ausgewählten Schaltschrankoptionen ab.

Abbildung 42: Zusätzliche AC-Versorgungsklemmen

▲ WARNUNG ▲

HOCHSPANNUNG

Der Netztrennschalter trennt nicht die externe Spannungsversorgung. Wenn die externe Spannungsversorgung nicht unterbrochen wird, bevor Komponenten im Steuerfach berührt werden, kann dies zum Tod oder zu schweren Verletzungen führen!

- Trennen Sie die externe Spannungsversorgung.
- Installation, Inbetriebnahme und Wartung der Frequenzumrichter dürfen ausschließlich von qualifiziertem Personal vorgenommen werden.

5.7.6.2 Hilfsspannungstransformator

Tabelle 34: Zusatzversorgungscodes

Zeichenposition	Optionscode	Beschreibung
21	2	230 V AC intern
	4	230 V AC intern + 24 V DC intern
	7	120 V AC intern
	8	120 V AC intern + 24 V DC intern

Der Hilfsspannungstransformator ist eine intern eingebaute Option, die es ermöglicht, die Versorgung vom Netz abzugreifen. Wenn der schaltschrankbasierte Frequenzumrichter mit einem Sicherungsschalter spezifiziert ist, wird die Versorgung des Hilfsspannungstransformators zwischen dem Frequenzumrichter und dem Sicherungsschalter abgezweigt. Diese Konfiguration ermöglicht eine Trennung der Steuerspannung durch den Hauptschalter.

Der Transformator hat an der Primärseite mehrere Abgreifpunkte für den Standardbereich der Spannungen, mit denen der Frequenzumrichter betrieben wird. Die werkseitige Verkabelung wird mit den höchsten Spannungsabgreifpunkten an der Primärseite verbunden, und die Abschaltungseinstellungen für die Klemme -FC4 werden entsprechend eingestellt. Der Kunde kann den Abgreifpunkt ändern, wenn die richtige Spannung angelegt und der thermisch-magnetische Trennschalter entsprechend eingestellt wird.

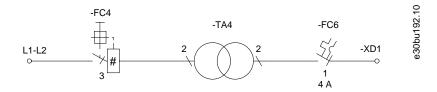


Abbildung 43: Klemmen des Hilfsspannungstransformators

HINWEIS

AUSFALL VON HILFSKOMPONENTEN

Falsche Spannung oder eine falsche Abgreifinstallation führen zum Ausfall anderer Hilfskomponenten im Steuerfach.

- Wenn Sie den Transformator durch Abgreifen der Spannung versorgen, stellen Sie sicher, dass die korrekte Spannung für den Frequenzumrichter angelegt wird.
- Verwenden Sie die richtigen Abgreif- und Abschaltungseinstellungen.

5.7.6.3 Externe +24 V DC-Versorgung

Tabelle 35: Zusatzversorgungscodes

Zeichenposition	Optionscode	Beschreibung
21	4	230 V AC intern+24 V DC intern
	5	230 V AC extern+24 V DC intern
	8	120 V AC intern+24 V DC intern
	9	120 V AC extern+24 V DC intern

Die externe 24 V DC-Versorgungsoption ermöglicht es, andere Hilfsoptionen an eine 24-VDC-Versorgung im Steuerfach anzuschließen.

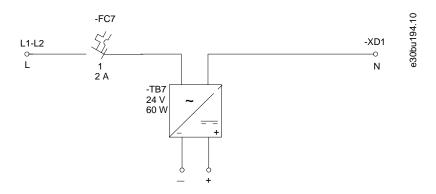


Abbildung 44: Klemmen für externe 24 V DC-Versorgung

5.7.6.4 Steckdose für Verbraucher

Tabelle 36: Funktionserweiterung-Optionscodes

Zeichenposi- tion	Option- scode	Beschreibung
23–24	A1	Steckdose + Schaltschrankleuchte
	AA	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen
	AB	Steckdose + Schaltschrankleuchte + Schaltschrankheizung
	AC	Steckdose + Schaltschrankleuchte + Motorheizungssteuerung
	AD	Steckdose + Schaltschrankleuchte + Isolationsüberwachung
	AE	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Schaltschrankheizung
	AF	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Motorheizungssteuerung
	AG	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Isolationsüberwachung
	АН	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Schaltschrankheizung + Motorheizungssteuerung
	Al	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Schaltschrankheizung + Isolation- süberwachung
	AJ	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Motorheizungssteuerung + Isolationsüberwachung
	AK	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Schaltschrankheizung + Motorheizungssteuerung + Isolationsüberwachung
	AL	Steckdose + Schaltschrankleuchte + Schaltschrankheizung + Motorheizungssteuerung
	AM	Steckdose + Schaltschrankleuchte + Schaltschrankheizung + Isolationsüberwachung
	AN	Steckdose + Schaltschrankleuchte + Schaltschrankheizung + Motorheizungssteuerung + Isolationsüberwachung
	AO	Steckdose + Schaltschrankleuchte + Motorheizungssteuerung + Isolationsüberwachung

Über die Steckdose können Messgeräte, andere elektrische Geräte oder ein Computer versorgt werden. Der Steckdosentyp ist CEE 7/3 ("Schuko", Typ F) oder NEMA 5-15 geerdet (Typ B). Die Standardspannung beträgt 230 V AC (IEC-Variante) bzw. 115 V AC (UL-Variante).

Bei Verwendung einer externen Versorgung beträgt die maximale Ausgangsleistung 450 VA (IEC-Variante) bzw. 230 VA (UL-Variante). Bei Verwendung einer Transformatorversorgung beträgt die maximale Ausgangsleistung bei beiden Varianten 200 VA.

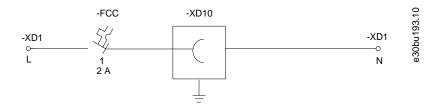


Abbildung 45: Klemmen der Steckdose für Verbraucher

5.7.6.5 Erweiterte I/O-Klemmen

Tabelle 37: Funktionserweiterung-Optionscodes

Zeichenposi- tion	Option- scode	Beschreibung	
23–24	A2	Erweiterte I/O-Klemmen	
	AA	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen	
	AE	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Schaltschrankheizung	
	AF	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Motorheizungssteuerung	
	AG	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Isolationsüberwachung	
	AH	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Schaltschrankheizung + Motorheizungssteuerung	
	Al	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Schaltschrankheizung + Isolation- süberwachung	
	AJ	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Motorheizungssteuerung + Isolationsüberwachung	
	AK	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Schaltschrankheizung + Motorheizungssteuerung + Isolationsüberwachung	
	AP	Erweiterte I/O-Klemmen + Schaltschrankheizung	
	AQ	Erweiterte I/O-Klemmen + Motorheizungssteuerung	
	AR	Erweiterte I/O-Klemmen + Isolationsüberwachung	
	AS	Erweiterte I/O-Klemmen + Schaltschrankheizung + Motorheizungssteuerung	
	AT	Erweiterte I/O-Klemmen + Schaltschrankheizung + Isolationsüberwachung	
	AU	Erweiterte I/O-Klemmen + Schaltschrankheizung + Motorheizungssteuerung + Isolationsüberwachung	
	AV	Erweiterte I/O-Klemmen + Motorheizungssteuerung + Isolationsüberwachung	

Die erweiterte I/O-Klemmenoption beinhaltet 25 Steuerklemmen (-XDW) im Steuerfach zur kundenseitigen Verwendung. Wenn der schaltschrankbasierte Frequenzumrichter mit einer beliebigen Option C1-Karte konfiguriert ist, wird der Klemmenblock -XDW für die Verdrahtung der Option C1-Karte verwendet.

5.7.6.6 Schaltschrankheizung

Tabelle 38: Funktionserweiterung-Optionscodes

Zeichenposi- tion	Option- scode	Beschreibung
23–24	A3	Schaltschrankheizung
	AB	Steckdose + Schaltschrankleuchte + Schaltschrankheizung
	AE	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Schaltschrankheizung
	AH	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Schaltschrankheizung + Motorheizungssteuerung
	Al	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Schaltschrankheizung + Isolation- süberwachung
	AK	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Schaltschrankheizung + Motorheizungssteuerung + Isolationsüberwachung
	AL	Steckdose + Schaltschrankleuchte + Schaltschrankheizung + Motorheizungssteuerung
	AM	Steckdose + Schaltschrankleuchte + Schaltschrankheizung + Isolationsüberwachung
	AN	Steckdose + Schaltschrankleuchte + Schaltschrankheizung + Motorheizungssteuerung + Isolationsüberwachung
	AP	Erweiterte I/O-Klemmen + Schaltschrankheizung
	AS	Erweiterte I/O-Klemmen + Schaltschrankheizung + Motorheizungssteuerung
	AT	Erweiterte I/O-Klemmen + Schaltschrankheizung + Isolationsüberwachung
	AU	Erweiterte I/O-Klemmen + Schaltschrankheizung + Motorheizungssteuerung + Isolationsüberwachung
	AW	Schaltschrankheizung + Motorheizungssteuerung
	AX	Schaltschrankheizung + Isolationsüberwachung
	AY	Schaltschrankheizung + Motorheizungssteuerung + Isolationsüberwachung

Die Schaltschrankheizungsoption erhöht die Innentemperatur des Schaltschranks über die Umgebungstemperatur und verhindert so Kondensation im Schaltschrank. Jeder Schaltschrank verfügt über eine Schaltschrankheizung. Das Heizelement ist selbstregulierend. Die externe Versorgung wird an Klemme -XD1.1 angeschlossen. Wenn sich der Frequenzumrichter nicht im Betriebszustand befindet, ändert das Steuerrelais +QAM die Versorgung der Ausgangsklemmen (-XD4). Wenn sich der Frequenzumrichter im Betriebszustand befindet, trennt das Steuerrelais die Versorgung zur Schaltschrankheizung. Die Funktion wird deaktiviert, wenn MCB –FCE geöffnet ist.

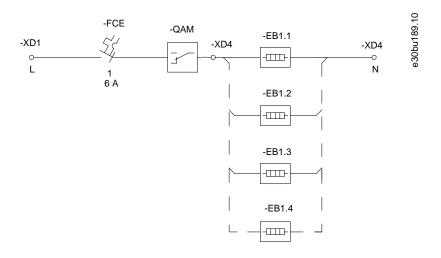


Abbildung 46: Klemmen der Schaltschrankheizung

5.7.6.7 Motorheizungssteuerung

Tabelle 39: Funktionserweiterung-Optionscodes

Zeichenposi- tion	Option- scode	Beschreibung			
23–24	A4	Motorheizungssteuerung			
	AC	Steckdose + Schaltschrankleuchte + Motorheizungssteuerung			
	AF	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Motorheizungssteuerung			
	АН	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Schaltschrankheizung + Motorheizungssteuerung			
	AJ	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Motorheizungssteuerung + Isolationsüberwachung			
AK		Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Schaltschrankheizung + Motorheizungssteuerung + Isolationsüberwachung			
	AL	Steckdose + Schaltschrankleuchte + Schaltschrankheizung + Motorheizungssteuerung			
	AN	Steckdose + Schaltschrankleuchte + Schaltschrankheizung + Motorheizungssteuerung + Isolationsüberwachung			
	AO	Steckdose + Schaltschrankleuchte + Motorheizungssteuerung + Isolationsüberwachung			
AQ		Erweiterte I/O-Klemmen + Motorheizungssteuerung			
	AS	Erweiterte I/O-Klemmen + Schaltschrankheizung + Motorheizungssteuerung			
	AU	Erweiterte I/O-Klemmen + Schaltschrankheizung + Motorheizungssteuerung + Isolationsüberwachung			
	AV	Erweiterte I/O-Klemmen + Motorheizungssteuerung + Isolationsüberwachung			
	AW	Schaltschrankheizung + Motorheizungssteuerung			
AY Schaltschr		Schaltschrankheizung + Motorheizungssteuerung + Isolationsüberwachung			
	AZ	Motorheizungssteuerung + Isolationsüberwachung			

Die Motorheizungsoption bietet die Möglichkeit, die Versorgung für die Antikondensationsheizung des Motors zu steuern. Die externe 24 V DC-Versorgung wird im unteren Bereich des Schaltschranks an Klemme -XD1.1 angeschlossen. Wenn sich der Frequenzumrichter nicht im Betriebszustand befindet, ändert das Steuerrelais +QAM die externe Versorgung der Ausgangsklemmen (-XDN). Wenn sich der Frequenzumrichter im Betriebszustand befindet, trennt das Steuerrelais die externe Versorgung zur Motorheizung. Die Funktion wird deaktiviert, wenn MCB –FCN geöffnet ist.

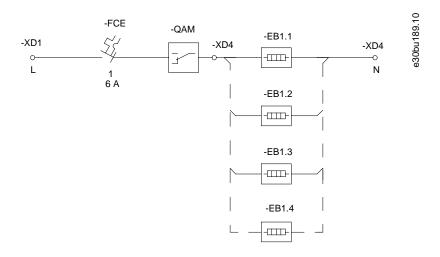


Abbildung 47: Motorheizungssteuerung (Heizungselement nicht enthalten)

5.7.6.8 Isolationsüberwachung

Tabelle 40: Funktionserweiterung-Optionscodes

Zeichenposi- tion	Option- scode	Beschreibung	
23–24	A5	Isolationsüberwachung	
	AD	Steckdose + Schaltschrankleuchte + Isolationsüberwachung	
	AG	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Isolationsüberwachung	
	Al	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Schaltschrankheizung + Isolation- süberwachung	
	AJ	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Motorheizungssteuerung + Isolationsüberwachung	
	AK	Steckdose + Schaltschrankleuchte + erweiterte I/O-Klemmen + Schaltschrankheizung + Motorheizungssteuerung + Isolationsüberwachung	
	AM	Steckdose + Schaltschrankleuchte + Schaltschrankheizung + Isolationsüberwachung	
	AN	Steckdose + Schaltschrankleuchte + Schaltschrankheizung + Motorheizungssteuerung + Isolationsüberwachung	
	AO	Steckdose + Schaltschrankleuchte + Motorheizungssteuerung + Isolationsüberwachung	
	AR	Erweiterte I/O-Klemmen + Isolationsüberwachung	
	AT	Erweiterte I/O-Klemmen + Schaltschrankheizung + Isolationsüberwachung	
	AU	Erweiterte I/O-Klemmen + Schaltschrankheizung + Motorheizungssteuerung + Isolationsüberwachung	
	AV	Erweiterte I/O-Klemmen + Motorheizungssteuerung + Isolationsüberwachung	
	AX	Schaltschrankheizung + Isolationsüberwachung	
	AY	Schaltschrankheizung + Motorheizungssteuerung + Isolationsüberwachung	
	AZ	Motorheizungssteuerung + Isolationsüberwachung	

Die Isolationsüberwachungsoption überwacht die Versorgungs- und Isolationsfehler auf Isolationsebene in einem IT-Versorgungsnetz mit einer Isolationsüberwachung im Schaltschrank.

5.7.6.9 Anzeigeleuchten und Reset-Tasten

Tabelle 41: Türmontierte Optionscodes

Zeichenposi- tion	Option- scode	Beschreibung	
28–29	D1	Anzeigeleuchten und Reset-Taste	
	DA	Anzeigeleuchten und Reset-Taste + Not-Aus-Schalter und Not-Aus-Drucktaste	
	DB	Anzeigeleuchten und Reset-Taste + STO mit Not-Aus-Drucktaste (keine Funktionssicherheit)	
	DC	Anzeigeleuchten und Reset-Taste + STO/SS1 mit Not-Aus-Drucktaste + "Sicher begrenzte Geschwindigkeit" (SLS – Safely Limited Speed) (TTL-Geber)	
	DE	Anzeigeleuchten und Reset-Taste + STO/SS1 mit Not-Aus-Drucktaste + "Sicher begrenzte Geschwindigkeit" (SLS – Safely Limited Speed) (HTL-Geber)	

Die Optionen für Anzeigeleuchte und Reset-Taste enthalten Anzeigeleuchten an der Steuerfachtür für Betriebs- und Fehlerzustände des Frequenzumrichters. Die Tür verfügt zudem über eine Taste für die Quittierfunktion des Frequenzumrichters.

5.7.6.10 Not-Aus-Schalter

Tabelle 42: Türmontierte Optionscodes

Zeichenposition	Optionscode	Beschreibung			
28–29 D2		Not-Aus-Schalter + Not-Aus-Drucktaste			
DA		Anzeigeleuchten und Reset-Taste + Not-Aus-Schalter und Not-Aus-Drucktaste			

Die Not-Aus-Schalteroption verfügt über ein Elngangsschütz zum Trennen des Frequenzumrichters vom Netz. Durch Drücken der Not-Aus-Taste an der Steuerfachtür wird der Steuerteil des Eingangsschützes geöffnet.

5.7.6.11 STO mit Not-Aus-Drucktaste an Tür

Tabelle 43: Türmontierte Optionscodes

Zeichenposition	Optionscode	Beschreibung			
28–29	D3	STO mit Not-Aus-Drucktaste (keine Funktionssicherheit)			
	DB	Anzeigeleuchten und Reset-Taste + STO mit Not-Aus-Drucktaste (keine Funktionssicherheit)			

Diese Option ermöglicht die Aktivierung der Funktion STO (Safe Torque Off) über eine Not-Aus-Drucktaste an der Tür des Steuerfachs. Die Steuerklemmen der Steuerkarte werden aus dem Inneren des Frequenzumrichtermoduls herausgeführt und zum Klemmenblocksatz -XD2 im Steuerfach herausgeführt. Die Not-Aus-Drucktaste ist zwischen den Klemmen -XD2.10 und -XD2.19 verdrahtet.

Durch Aktivierung der Not-Aus-Drucktaste wird verhindert, dass das Gerät die für die Drehung des Motors erforderliche Spannung erzeugt. Die Option bietet:

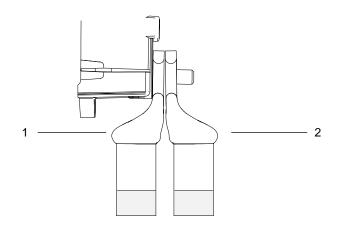
- Safe Torque Off (STO) gemäß EN IEC 61800-5-2
- Stoppkategorie 0 gemäß EN IEC 60204-1.

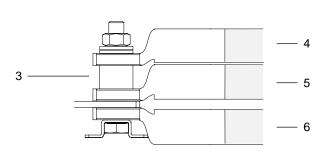
5.8 Anschließen von Motor-, Netz- und Erdungskabeln

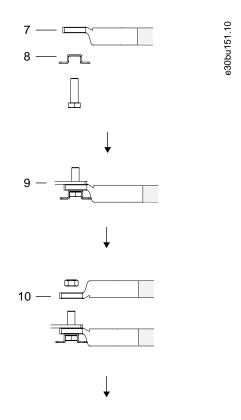
5.8.1 Berücksichtigungen bei der Leistungsverkabelung und Erdung

Motor- und Netzanschlüsse

- Wählen Sie die Querschnitte der Kabel anhand des Eingangsstroms des Frequenzumrichters. Maximale Kabelquerschnitte siehe im Abschnitt "Elektrische Daten".
- Befolgen Sie bezüglich der Kabelquerschnitte örtliche und nationale Vorschriften.
- Befolgen Sie die Anforderungen des Motorherstellers an die Motorkabel.
- Kabeleinführungen für Motorkabel oder Bodenplatten mit Durchführungen sind am Sockel von Geräten mit Schutzart IP21/IP54 (NEMA 1/NEMA 12) vorgesehen.
- Schließen Sie keine Anlauf- oder Polumschaltung (z. B. Dahlander-Motor oder Asynchron-Schleifringläufermotor) zwischen Frequenzumrichter und Motor an.


Erdanschluss




- Erden Sie den Frequenzumrichter gemäß den geltenden Normen und Richtlinien.
- Verwenden Sie für Netzversorgung, Motorkabel und Steuerleitungen einen speziellen Schutzleiter.
- Erden Sie Frequenzumrichter nicht in Reihe hintereinander.
- Halten Sie die Erdungskabel so kurz wie möglich.
- Befolgen Sie die Anforderungen des Motorherstellers an die Motorkabel.
- Mindestleitungsquerschnitt: 10 mm² (6 AWG) (oder 2 getrennt abgeschlossene, entsprechend bemessene Erdungskabel).
- Ziehen Sie die Klemmen gemäß den in 10.11 Nenndrehmomente für Schrauben angezeigten Informationen fest.

EMV-gerechte Installation

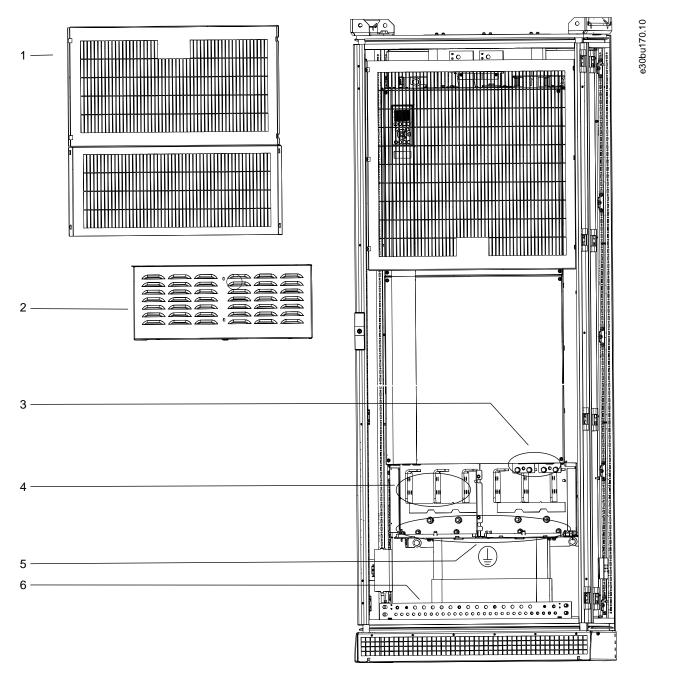
Siehe <u>5.2 EMV-gerechte Installation</u>.

1	Kabel 1	2 Kabel 2
3	Anschlussbuchse	4 Kabel 1
5	Kabel 2	6 Kabel 3
7	Kabelschuh 1	8 Schraubenhalterung am Steckverbinder
9	Klemmenstecker	10 Kabelschuh 2

Abbildung 48: Verschiedene Möglichkeiten zur Anschluss mehrerer Kabel an 1 Klemme

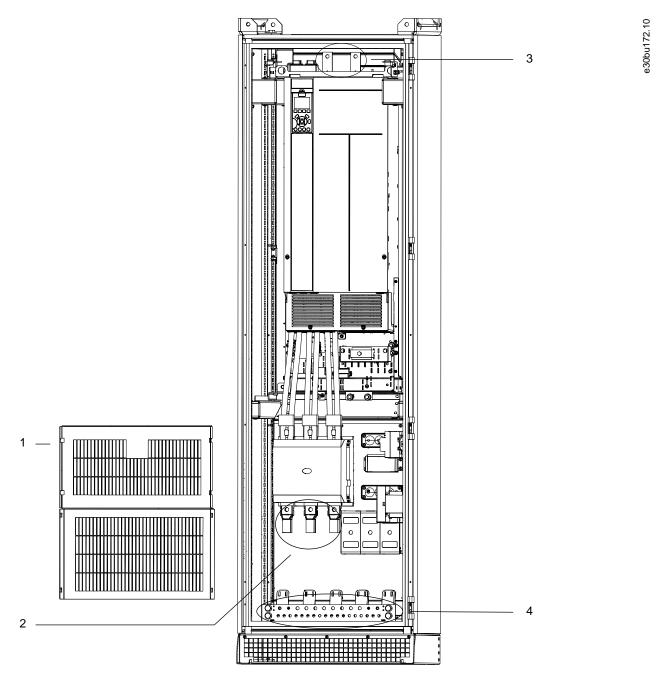
5.8.2 Netzanschluss

Context:


Wenn der schaltschrankbasierte Frequenzumrichter nicht mit einem Eingangsfilter oder einer Eingangsleistungsoption konfiguriert ist, schließen Sie das Netz an das Frequenzumrichtermodul an. Schließen Sie die Netzversorgung andernfalls an die Eingangsleistungsoption an.

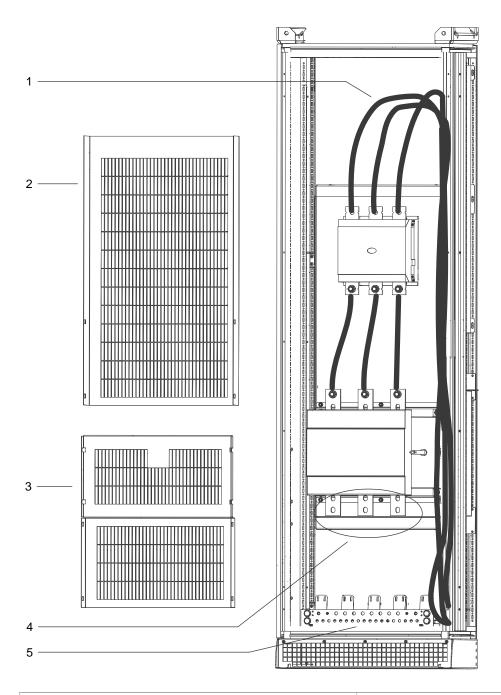
Vorgehensweise

- 1. Isolieren Sie einen Abschnitt der äußeren Kabelisolierung ab.
- 2. Bringen Sie einen Steckverbinder/Kabelschuh am Ende des abisolierten Kabels an.
- 3. Stellen Sie einen elektrischen Kontakt zwischen Kabelschirm und Masse her, indem Sie das abisolierte Kabel unter der Kabelschelle befestigen.
- **4.** Schließen Sie das Erdungskabel gemäß den Erdungsanweisungen in <u>5.8.6 Erdungsanschluss</u> an die nächstgelegene Erdungsklemme an.
- 5. Schließen Sie die 3 Phasen der Netzeingangskabel an die Klemmen R (L1), S (L2) und T (L3) an.
- **6.** Versorgt ein IT-Netz eine potenzialfreie Dreieckschaltung oder ein TT/TN-S-Netz mit geerdetem Zweig (geerdete Dreieckschaltung) den Frequenzumrichter, so stellen Sie *Parameter 14-50 EMV-Filter* auf [0] Aus, um Beschädigungen des Zwischenkreises zu vermeiden und die Erdungskapazität zu verringern.
- 7. Ziehen Sie die Klemmen gemäß den in 10.11 Nenndrehmomente für Schrauben angezeigten Spezifikationen fest.


Beispiel:

1 Schaltschrankgitter (unten)	2 Klemmenabdeckung
Brems- und Zwischenkreiskopplungsklemmen	4 Netzklemmen
5 Erdungsklemmen	6 Erdungsschiene

 ${\bf Abbildung~49:}~~{\bf Netzanschlusspunkte~am~Frequenzum richter modul}$



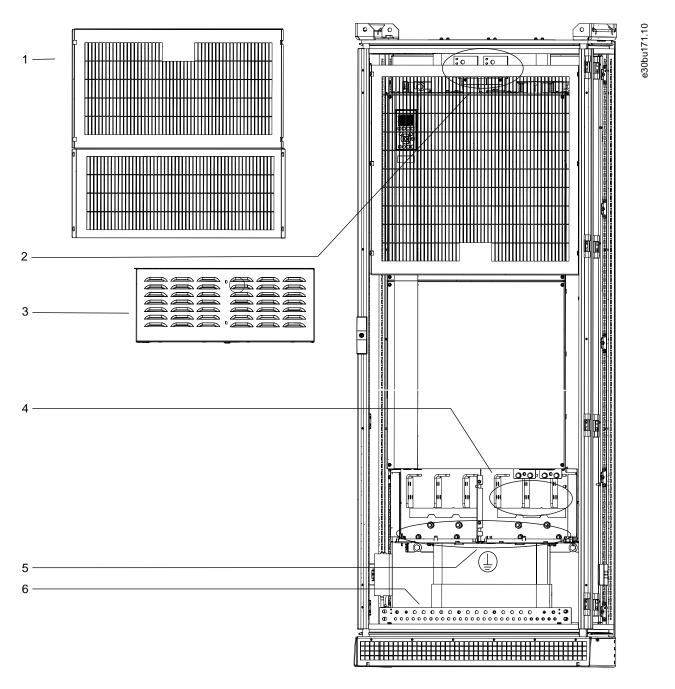
1	Schaltschrankgitter (unten)	2	Eingangsleistungsklemmen (Schützoption ist abgebildet)
3	DC-Klemmen	4	Erdungsschiene

Abbildung 50: Netzanschlusspunkte an Eingangsleistungsoption (schaltschrankbasierter Frequenzumrichter ohne Leistungsoptionsschrank konfiguriert)

Werkseitig montierte Kabel, mit denen das Schütz an den Frequenzumrichtereingangsklemmen angeschlossen wird
 Schaltschrankgitter (oben)
 Eingangsleistungsklemmen (Schalteroption ist abgebildet)

Abbildung 51: Netzanschlusspunkte an Eingangsleistungsoption (schaltschrankbasierter Frequenzumrichter mit Leistungsoptionsschrank konfiguriert)

5 Erdungsschiene


5.8.3 Anschließen des Frequenzumrichtermoduls am Motor

Vorgehensweise

- 1. Isolieren Sie einen Abschnitt der äußeren Kabelisolierung ab.
- 2. Bringen Sie einen Steckverbinder/Kabelschuh am Ende des abisolierten Kabels an.
- 3. Stellen Sie einen elektrischen Kontakt zwischen Kabelschirm und Masse her, indem Sie das abisolierte Kabel unter der Kabelschelle befestigen.
- **4.** Schließen Sie das Erdungskabel gemäß den Erdungsanweisungen in <u>5.8.6 Erdungsanschluss</u> an die nächstgelegene Erdungsklemme an.
- 5. Schließen Sie die 3 Phasen der AC-Motorkabel an die Klemmen U (T1), V (T2) und W (T3) an.
- 6. Ziehen Sie die Klemmen gemäß den in 10.11 Nenndrehmomente für Schrauben angezeigten Spezifikationen fest.

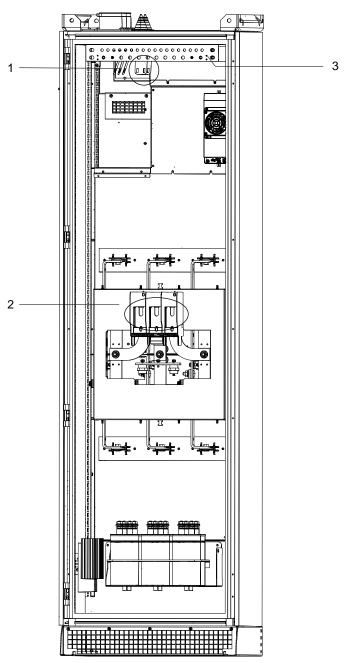
Beispiel:

1	Schaltschrankgitter (unten)	2	DC-Klemmen
3	Klemmenabdeckung	4	Motorklemmen
5	Erdungsklemmen am Frequenzumrichtermodul	6	Erdungsschiene

Abbildung 52: Anschlusspunkte zum Anschließen des Frequenzumrichtermoduls am Motor

5.8.4 Anschließen des Sinusfilters am Motor

Vorgehensweise


- 1. Isolieren Sie einen Abschnitt der äußeren Kabelisolierung ab.
- 2. Bringen Sie einen Steckverbinder/Kabelschuh am Ende des abisolierten Kabels an.
- 3. Stellen Sie einen elektrischen Kontakt zwischen Kabelschirm und Masse her, indem Sie das abisolierte Kabel unter der Kabelschelle befestigen.
- **4.** Schließen Sie das Erdungskabel gemäß den Erdungsanweisungen in <u>5.8.6 Erdungsanschluss</u> an die nächstgelegene Erdungsklemme an.
- 5. Schließen Sie die 3 Phasen des AC-Motorkabels an die Sinusfilerklemmen U, V und W an.
 - Wenn der schaltschrankbasierte Frequenzumrichter über einen Sinusfilterschrank verfügt, verlegen Sie einen Satz Motorkabel zum Schaltschrank.
 - Wenn der schaltschrankbasierte Frequenzumrichter über zwei Sinusfilterschränke verfügt, verlegen Sie zwei Sätze Motorkabel, davon jeweils einen zu jedem Sinusfilterschrank.

HINWEIS

- Jeder Sinusfilter-Schrank muss über dieselbe Anzahl an Motorphasenkabeln verfügen, und diese müssen in Vielfachen von 2 vorliegen (z. B. 2, 4, 6 oder 8). 1 Kabel ist nicht zulässig. Die Kabel müssen gleiche Längen haben.
- 6. Ziehen Sie die Klemmen gemäß den in 10.11 Nenndrehmomente für Schrauben angezeigten Spezifikationen fest.

Beispiel:

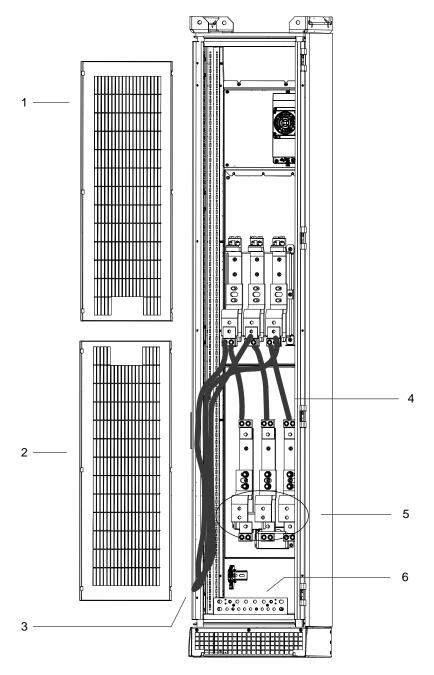
2 Motorklemmen

Abbildung 53: Anschlusspunkte zum Anschließen des Sinusfilters am Motor

DC-Bus-Zwischenkreisklemmen

e30bu176.10

3 Erdungsschiene



5.8.5 Anschließen des dU/dt-Filters am Motor

Vorgehensweise

- 1. Isolieren Sie einen Abschnitt der äußeren Kabelisolierung ab.
- 2. Bringen Sie einen Steckverbinder/Kabelschuh am Ende des abisolierten Kabels an.
- 3. Stellen Sie einen elektrischen Kontakt zwischen Kabelschirm und Masse her, indem Sie das abisolierte Kabel unter der Kabelschelle befestigen.
- **4.** Schließen Sie das Erdungskabel gemäß den Erdungsanweisungen in <u>5.8.6 Erdungsanschluss</u> an die nächstgelegene Erdungsklemme an.
- 5. Schließen Sie die 3 Phasen der AC-Motorkabel an die dU/dt-Klemmen U (T1), V (T2) und W (T3) an.
- 6. Ziehen Sie die Klemmen gemäß den in 10.11 Nenndrehmomente für Schrauben angezeigten Spezifikationen fest.

Beispiel:

1	Schaltschrankgitter (oben)	2	Schaltschrankgitter (unten)
3	Werkseitig installierte Leistungskabel vom	4	Werkseitig installierte Kabel
	Frequenzumrichtermodul	6	Erdungsschiene
5	Motorklemmen		

Abbildung 54: Anschlusspunkte zum Anschließen des dU/dt-Filters am Motor

30bu175.10

5.8.6 Erdungsanschluss

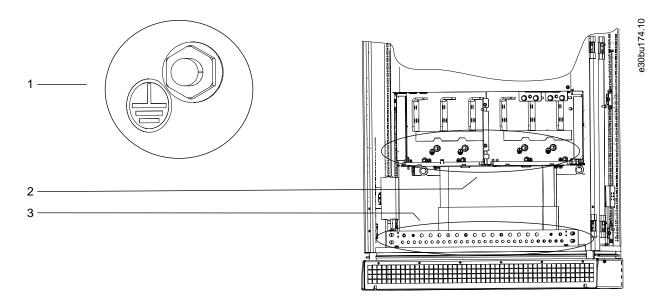
Context:

⚠ WARNUNG **⚠**

GEFAHR DURCH ABLEITSTROM

Ableitströme überschreiten 3,5 mA. Eine nicht ordnungsgemäße Erdung des Frequenzumrichters kann zum Tod oder zu schweren Verletzungen führen!

- Stellen Sie die ordnungsgemäße Erdung der Anlage durch einen zugelassenen Elektroinstallateur sicher.


HINWEIS

POTENZIALAUSGLEICH

Es besteht die Gefahr von Schalttransienten, wenn das Massepotenzial zwischen Frequenzumrichter und System abweicht.

- Installieren Sie Ausgleichskabel zwischen den Systemkomponenten. Empfohlener Leitungsquerschnitt: 16 mm² (5 AWG).
- 1. Isolieren Sie einen Abschnitt der äußeren Kabelisolierung ab.
- 2. Bringen Sie einen Steckverbinder/Kabelschuh am Ende des abisolierten Kabels an.
- 3. Schließen Sie das Erdungskabel an der nächsten Erdungsklemme an.
- 4. Ziehen Sie die Klemmen gemäß den in 10.11 Nenndrehmomente für Schrauben angezeigten Spezifikationen fest.

Beispiel:

- 1 Symbol zur Kennzeichnung von Erdungsklemmen
- 2 Erdungspunkte am Frequenzumrichtermodul
- 3 Erdungsschiene (in jedem Schaltschrank vorhanden)

Abbildung 55: Erdungsanschlusspunkte

5.9 Installation von vorgeschalteten Sicherungen

5.9.1 Empfohlene Sicherungsnennwerte für die IEC-Installation

Tabelle 44: Empfohlene Sicherungsnennwerte für die IEC-Installation, 380-480 V

Umrichter- modell	Teilenr. der Sicherung	Sicherungs- größe	Nenn- strom [A]	Minimaler SCCR [kA]	Maximaler Si- cherungsnenn- wert F1 [A]	Minimaler Spannungs- nennwert [V]	Typ F1
N110K	Mersen NH1GG50V250	1	250	6,8	250	500	gG/gL
N132	Mersen NH2GG50V315	2	315	7	315	500	gG/gL
N160	Mersen NH2GG50V355	2	355	8,5	355	500	gG/gL
N200	Mersen NH3GG50V425	3	425	10	425	500	gG/gL
N250	Mersen NH3AGG50V630	3	630	13	630	500	gG/gL
N315	Mersen NH3AGG50V630	3	630	13	630	500	gG/gL
N355	Mersen NH4GG50V800	4	800	18	800	500	gG/gL
N400	Mersen NH4GG50V1000	4	1000	25	1000	500	gG/gL
N450	Mersen NH4GG50V1000	4	1000	25	1000	500	gG/gL
N500	Mersen NH4GG50V1000	4	1000	25	1000	500	gG/gL
N560	Mersen NH4GG50V1250	4	1250	33	1250	500	gG/gL

Tabelle 45: Empfohlene Sicherungsnennwerte für die IEC-Installation, 525–690 V

Umrichter- modell	Teilenr. der Sicherung	Sicherungs- größe	Nenn- strom [A]	Minimaler SCCR [kA]	Maximaler Si- cherungsnenn- wert F1 [A]	Minimaler Spannungs- nennwert [V]	Typ F1
N110	Mersen NH2GG69V250	2	250	6,5	250	690	gG/gL
N132	Mersen NH2GG69V250	2	250	6,5	250	690	gG/gL
N160K	Mersen NH2GG69V250	2	250	6,5	250	690	gG/gL
N200	Mersen NH2GG69V315	2	315	7.5	315	690	gG/gL
N250	Mersen NH3GG69V355	3	355	8,5	355	690	gG/gL
N315	Mersen NH3GG69V425	3	425	9.5	425	690	gG/gL
N400	Mersen NH3GG69V500	3	500	12	500	690	gG/gL
N450	Mersen NH3GG69V500	3	500	12	500	690	gG/gL
N500	Mersen NH4GG69V630	4	630	14	630	690	gG/gL
N560	Mersen NH4GG69V800	4	800	19	800	690	gG/gL
N630	Mersen NH4GG69V800	4	800	19	800	690	gG/gL
N710	ABB OFAA4GG1000	4	1000	25	1000	690	gG/gL
N800	ABB OFAA4GG1000	4	1000	25	1000	690	gG/gL

5.9.2 Empfohlene Sicherungsnennwerte für die UL-Installation

Die Tabellenwerte werden unter Verwendung von Korrekturfaktoren für eine Umgebungsbetriebsbedingung von 40 °C (104 °F) und unter Verwendung von Kabeln mit einem Isolations-Mindestwert von 90 °C (194 °F) berechnet.

Die UL-Zulassung gilt für eine maximale Eingangsspannung von 600 V. Nach UL508A ist der Nennkurzschlussstrom (SCCR) wie folgt:

- Schaltschrankbasierte Frequenzumrichter mit Sicherungstrennschalter oder Sicherungstrennschalter und Schützoption weisen einen Nennkurzschlussstrom (SCCR) von 65 kA bei Nennspannung auf.
- Schaltschrankbasierte Frequenzumrichter mit einer einzelnen Trennung (nur Netzschütz oder nur Trennschalteroption) weisen einen Nennkurzschlussstrom (SCCR) von 5 kA auf, können aber bei Verwendung von Sicherungen der empfohlenen Klasse 65 kA erreichen.
- Schaltschrankbasierte Frenquenzumrichter mit der MCCB-Option haben eine Schaltleistung von 65 kA bei 380-480 V und eine Schaltleistung von 50 kA bei 525-690 V.

Tabelle 46: Empfohlene Sicherungsnennwerte für die UL-Installation, 380–480 V

Umrich- termodell	Teilenr. der Sicherung	Maximaler Strom [A]	Abschalt- strom [A]	Spitzen- durchlass [A]	Maximaler Si- cherungsnenn- wert F1 [A]	Minimaler Spannungs- nennwert [V]	Klasse F1
N110	Mersen A4J300	300	4000	9000	300	500	Klasse J
N132	Mersen A4J350	350	4600	10000	350	500	Klasse J
N160	Mersen A4J400	400	5000	10400	400	500	Klasse J
N200	Mersen A4J500	500	8000	11500	500	500	Klasse J
N250	Mersen A4J600	600	9000	12000	600	500	Klasse J
N315	Mersen AABY750	750	11500	28000	750	500	Klasse J
N355	Mersen A4BY800	800	12000	28000	800	500	Klasse J
N400	Mersen A4BY1000	1000	15000	35000	1000	500	Klasse J
N450	Mersen A4BY1000	1000	15000	35000	1000	500	Klasse J
N500	Mersen A4BY1000	1100	18500	42000	1100	500	Klasse J
N560	Mersen A4BY1200	1200	19000	42000	1200	500	Klasse J

Tabelle 47: Empfohlene Sicherungsnennwerte für die UL-Installation, 525–690 V

Umrichter- modell	Teilenr. der Sicherung	Maximaler Strom [A]	Abschalt- strom [A]	Spitzen- durchlass [A]	Maximaler Si- cherungs- nennwert F1 [A]	Minimaler Spannungs- nennwert [V]	Klasse F1
N110	Mersen A4J300	175	2400	5400	175	600	Klasse L
N132	Mersen A4J350	200	2700	6	200	600	Klasse L
N160	Mersen A4J400	250	3200	7500	250	600	Klasse L
N200	Mersen A4J500	350	4600	10000	350	600	Klasse L
N250	Mersen A4J600	400	5000	10400	400	600	Klasse L
N315	Mersen AABY750	500	8000	11500	500	600	Klasse L
N400	Mersen A4BY800	600	9000	12000	600	600	Klasse L
N450	Mersen A4BY1000	600	9000	12000	600	600	Klasse L

Umrichter- modell	Teilenr. der Sicherung	Maximaler Strom [A]	Abschalt- strom [A]	Spitzen- durchlass [A]	Maximaler Si- cherungs- nennwert F1 [A]	Minimaler Spannungs- nennwert [V]	Klasse F1
N500	Mersen A4BY1000	650	11500	28000	750	600	Klasse L
N560	Mersen A4BY1200	750	11500	28000	750	600	Klasse L
N6300	Mersen A4BY1200	800	12000	28000	800	600	Klasse L
N710	Mersen A4BY1200	1000	15000	35000	1000	600	Klasse L
N800	Mersen A4BY1200	1100	18500	42000	1100	600	Klasse L

5.10 Aktivierung des Motorbetriebs

Context:

Wenn die Statuszeile unten im LCP AUTO FERN FREILAUF anzeigt, ist der Frequenzumrichter betriebsbereit, es fehlt aber ein Eingangssignal an Klemme XD2.14 im Steuerfach. Klemme XD2.14 der Digitaleingänge ist auf den Empfang eines 24 V DC-Signals für externe Verriegelung ausgelegt, die es ermöglicht, dass der Frequenzumrichter zum Betrieb werkseitig programmierte Werte verwendet.

HINWEIS

WERKSEITIG INSTALLIERTE OPTIONALE GERÄTE

Entfernen Sie die werkseitig installierte Verkabelung nicht von Klemme XD2.14. Wenn der Frequenzumrichter nicht in Betrieb ist, siehe die Dokumentation für die optionalen Geräte, die an Klemme XD2.14 angeschlossen ist.

Vorgehensweise

1. Kommt keine Verriegelungsvorrichtung zum Einsatz, schließen Sie eine Brücke (Wago Kammbrücker 2002-423) zwischen Klemme XD2.11 und XD2.14 im Steuerfach an. Diese Brücke liefert ein 24-V-DC-Signal an Klemme XD2.14. Der Frequenzumrichter ist betriebsbereit.

5.11 Auswahl des Spannungs-/Stromeingangssignals

Context:

An den Analogeingangsklemmen XD2.7 und XD2.8 im Steuerfach können Sie eine Spannung (0-10 V) oder einen Strom (0/4-20 mA) als Eingangssignal auswählen.

- Klemme XD2.7: Drehzahlsollwertsignal ohne Rückführung (siehe Parameter 16-61 Klemme 53 Schaltereinstellung).
- Klemme XD2.8: Istwertsignal bei Regelung mit Rückführung (siehe Parameter 16-63 Klemme 54 Schaltereinstellung).

Vorgehensweise

- 1. Trennen Sie die Stromversorgung zum Frequenzumrichter.
- 2. Entfernen Sie das LCP (Local Control Panel).
- 3. Entfernen Sie jegliche optionale Ausrüstung zur Abdeckung der Schalter.
- **4.** Stellen Sie Schalter A53 and A54 ein, um den Signaltyp auszuwählen (U = Spannung, I = Strom).

Beispiel:

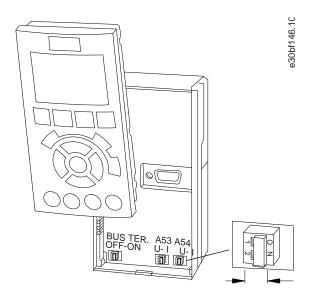


Abbildung 56: Lage der Schalter A53 und A54

5.12 Einrichten einer RS485-Telegrammkommunikation

5.12.1 Konfiguration der seriellen Schnittstelle RS485

Vorgehensweise

- 1. Schließen Sie das serielle RS485-Schnittstellenkabel an die Klemmen (+) XD2.2 und (-) XD2.3 an.
 - Verwenden Sie ein abgeschirmtes serielles Schnittstellenkabel.
 - Erden Sie die Verkabelung ordnungsgemäß. Siehe <u>5.8.6 Erdungsanschluss</u>.
- 2. Wählen Sie den Protokolltyp in Parameter 8-30 Protokoll aus.
- 3. Wählen Sie die Frequenzumrichteradresse in Parameter 8-31 Adresse aus.
- 4. Wählen Sie die Baudrate in Parameter 8-32 Baudrate aus.

Beispiel:

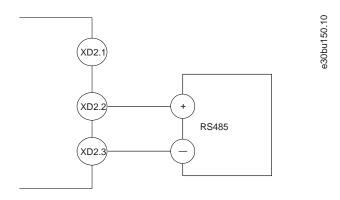


Abbildung 57: RS485-Anschluss

5.13 Konfiguration des passiven Oberschwingungsfilters (PHF)

Context:

HINWEIS

SACHSCHÄDEN

Wenn Sie nicht die richtigen Einstellungen verwenden, kann dies zu einer Überhitzung des Frequenzumrichters führen, was zu Schäden am Frequenzumrichter und seiner Umgebung führen kann.

- Stellen Sie sicher, dass der Wert in Parameter 5-02 Klemme 29 Funktion auf [1] Ausgang eingestellt ist.
- Stellen Sie sicher, dass der Wert in Parameter 5-31 Klemme 29 auf [188] AHF Capacitor Connect (AHF-Kondensatoranschluss) eingestellt ist.

Vorgehensweise

- 1. Stellen Sie Parameter 5-02 Klemme 29 Funktion auf [1] Ausgang ein.
- 2. Stellen Sie Parameter 5-31 Klemme 29 auf [188] AHF Capacitor Connect (AHF-Kondensatoranschluss).

5.14 Konfiguration der dU/dt-Filter

Context:

HINWEIS

SACHSCHÄDEN

Wenn Sie nicht die richtigen Einstellungen für die Baugrößen D9h und D10h verwenden, kann dies zu einer Überhitzung des Frequenzumrichters führen, was zu Schäden am Frequenzumrichter und seiner Umgebung führen kann.

- Vergewissern Sie sich bei den Baugrößen D9h und D10h, dass der Wert in *Parameter 14-52 Lüftersteuerung* auf [3] 100% eingestellt ist. Bei den Baugrößen E5h und E6h muss die Einstellung von 100 % nicht verwendet werden.

Vorgehensweise

1. Stellen Sie Parameter 14-52 Ausgangsfilter auf [3] 100% ein.

5.15 Konfiguration des Sinusfilters

Context:

HINWEIS

SACHSCHÄDEN

Wenn Sie nicht die richtigen Einstellungen verwenden, kann dies zu einer Überhitzung des Frequenzumrichters führen, was zu Schäden am Frequenzumrichter und seiner Umgebung führen kann.

 Vergewissern Sie sich, dass der Wert in Parameter 14-55 Ausgangsfilter dem verwendeten Ausgangsfiltertyp entspricht.

Vorgehensweise

1. Stellen Sie Parameter 14-55 Ausgangsfilter auf [1] Sine-wave (Sinusfilter) ein.

5.16 (MCCB) Lasttrennschalter-Konfiguration

Der Kompaktleistungsschalter-MCCB (Molded-Case Circuit Breaker) bietet die folgenden Abschaltungseinstellungen:

- Motorüberlastschutz (L). Der Frequenzumrichter schaltet bei Überlast mit inverser Langzeitverzögerungsabschaltung gemäß dem Standard IEC 60947-2 (I2t=k) ab.
- Kurzschlussschutz mit Zeitverzögerung (S). Der Frequenzumrichter schaltet bei einem Kurzschluss ab, mit inverser Langzeitverzögerungsabschaltung (12t=k EIN) oder einer konstanten Abschaltungszeit (12t=k AUS).
- Sofortiger Kurzschlussschutz (I). Der Frequenzumrichter schaltet im Falle eines Kurzschlusses sofort ab. Die Abschaltungsfunktion (L) ist immer verfügbar, und Sie können (S) oder (I) über den DIP-Schalter [S/I] an der Abschaltungseinheit des MCCB auswählen.

Werkseinstellungen stehen für die Funktionen L und I zur Verfügung.

- Die Überstromeinstellung (L) beträgt 100 % der 1,5-fach höheren Überlast-FLA (I₁).
- Für die Zeitverzögerung (t1) werden 12 s für das 6-fache von I₁ ausgewählt.
- Die Kurzschluss-Sofortabschaltung (I) wird durchgeführt. Die Kurzschlussabschaltung mit Zeitverzögerung (S) wird in den Werkseinstellungen ignoriert.
- Die Kurzschluss-Sofortabschaltung (I) wird bei 300 % von 100 % der normalen Überlast-FLA (I₃) des Frequenzumrichters angesetzt.
- Die neutrale Einstellung (N) ist 100 %.
- Die Betriebsfrequenz wird werkseitig auf 50 Hz eingestellt.

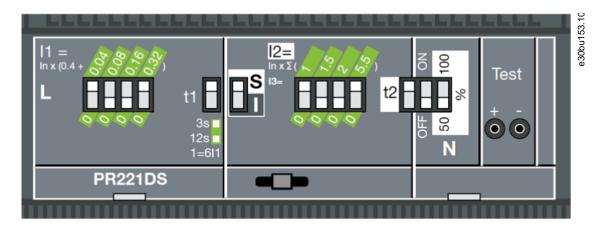


Abbildung 58: MCCB-Werkseinstellungen

5.17 Verdrahtung der Funktion Safe Torque Off (STO)

Die Funktion Safe Torque Off (STO) ist ein Bestandteil des sicherheitsbezogenen Steuerungssystems. STO verhindert, dass das Gerät die für die Drehung des Motors erforderliche Spannung erzeugt. Zur Ausführung der STO-Funktion ist eine zusätzliche Verkabelung des Frequenzumrichters erforderlich. Siehe VLT* Bedienungsanleitung zu Safe Torque Off.

6 Checkliste vor der Inbetriebnahme

6.1 Checkliste vor der Inbetriebnahme

Motor

- Prüfen Sie den korrekten Motoranschluss durch Messen der Widerstandswerte an U-V (96–97), V-W (97–98) und W-U (98–96).
- Prüfen Sie, ob die Versorgungsspannung mit der Spannung von Frequenzumrichter und Motor übereinstimmt.

Schalter

· Stellen Sie sicher, dass alle Schalter und Trennschalter in der richtigen Schaltposition stehen.

Zusatzeinrichtungen

- Achten Sie auf Zusatzeinrichtungen, Schalter, Trennschalter oder Netzsicherungen bzw. Hauptschalter, die netz- oder motorseitig am Frequenzumrichter angeschlossen sind. Stellen Sie sicher, dass diese Einrichtungen für einen Betrieb bei voller Drehzahl bereit sind.
- Überprüfen Sie den Zustand und die Funktion von Sensoren, die Istwertsignale zum Frequenzumrichter senden.
- Entfernen Sie die Kondensatoren zur Leistungsfaktorkorrektur am Motor.
- Stellen Sie alle Kondensatoren zur Leistungsfaktorkorrektur an der Netzseite ein und stellen Sie sicher, dass diese verdrosselt werden.

Kabel/Kabelführung

 Stellen Sie sicher, dass Sie Motorkabel, Bremskabel (falls vorhanden) und Steuerleitungen getrennt oder abgeschirmt oder in 3 separaten Metall-Installationsrohren zur Vermeidung von Hochfrequenzstörungen verlegen.

Steuerleitungen

- Prüfen Sie, ob Kabel gebrochen oder beschädigt sind und ob lose Verbindungen vorliegen.
- · Stellen Sie zur Gewährleistung der Störfestigkeit sicher, dass Steuerleitungen getrennt von Leistungskabeln verlaufen.
- Prüfen Sie den Stellbereich der Signale.
- · Verwenden Sie abgeschirmte Kabel oder Kabel mit verdrillten Aderpaaren.
- Stellen Sie sicher, dass die Abschirmung richtig abgeschlossen ist.

Netz- und Motorkabel

- Prüfen Sie, ob alle Kontakte fest angeschlossen sind.
- Stellen Sie sicher, dass Motor- und Netzkabel in getrennten Installationsrohren verlegt sind oder getrennte abgeschirmte Kabel verwendet werden.

Erdung

- Vergewissern Sie sich, dass eine ordnungsgemäße Erdung vorgenommen wird. Eine Erdung an Kabelkanälen oder eine Montage der Rückwand an einer Metallfläche stellen keine ausreichende Erdung dar.
- Prüfen Sie, dass die Anlage eine Erdverbindung besitzt und die Kontakte fest angezogen sind und keine Oxidation aufweisen.

Sicherungen und Hauptschalter

- Stellen Sie sicher, dass die richtigen Sicherungen oder Trennschalter eingebaut sind.
- Überprüfen Sie, dass alle Sicherungen fest eingesteckt und funktionsfähig sind.
- Überprüfen Sie, dass alle Trennschalter (falls vorhanden) geöffnet sind.

Abstand zur Kühlluftzirkulation

- · Suchen Sie nach Hindernissen im Luftstromweg.
- Messen Sie den Freiraum oberhalb und unterhalb des Frequenzumrichters, um zu prüfen, ob mindestens 225 mm (9 in) für eine ausreichende Luftzirkulation vorhanden sind.

Umgebungsbedingungen

Überprüfen Sie, dass die Anforderungen für die Umgebungsbedingungen erfüllt sind. Siehe den Abschnitt "Umgebungsbedingungen".

Innenseite des Frequenzumrichters

- Stellen Sie sicher, dass das Innere des Frequenzumrichters frei von Schmutz, Metallspänen, Feuchtigkeit und Korrosion ist.
- Stellen Sie sicher, dass alle Installationswerkzeuge aus dem Geräteinneren entfernt wurden.
- Bei Gehäusen mit der Schutzart IP20/Chassis ist darauf zu achten, dass das Gerät auf einer unlackierten Metalloberfläche montiert wird.

Vibrationen

- · Stellen Sie sicher, dass der Frequenzumrichter stabil montiert ist oder bei Bedarf Dämpferbefestigungen verwendet werden.
- Prüfen Sie, ob übermäßige Vibrationen vorhanden sind.

7 Inbetriebnahme

7.1 Netzversorgung am Frequenzumrichter anlegen

Context:

Stellen Sie vor dem Anlegen der Netzversorgung am Frequenzumrichter sicher, dass der Umrichter und alle mit diesem verbundenen Geräte betriebsbereit sind. Siehe Checkliste vor der Inbetriebnahme.

⚠ WARNUNG ⚠

UNERWARTETER ANLAUF

Wenn der Frequenzumrichter an das Versorgungsnetz, die DC-Versorgung oder die Zwischenkreiskopplung angeschlossen ist, kann der Motor jederzeit anlaufen, was zum Tod oder zu schweren Verletzungen sowie zu Geräte- oder Sachschäden führen kann! Der Motor kann über einen externen Schalter, einen Feldbus-Befehl, ein Sollwerteingangssignal, über einen Tastendruck an LCP oder LOP, eine Fernbedienung per MCT 10 Konfigurationssoftware oder nach einem quittierten Fehlerzustand anlaufen.

- Drücken Sie vor der Programmierung von Parametern die Taste [Off] am LCP.
- Ist ein unerwarteter Anlauf des Motors gemäß den Bestimmungen zur Personensicherheit unzulässig, trennen Sie den Frequenzumrichter vom Netz.
- Prüfen Sie, ob der Frequenzumrichter, der Motor und alle angetriebenen Geräte betriebsbereit sind.

HINWEIS

FEHLENDES SIGNAL

Wenn die Statuszeile unten auf der Bedieneinheit AUTO FERN MOTORFREILAUF oder *Alarm 60 Ext. Verriegelung* anzeigt, ist der Frequenzumrichter betriebsbereit, es fehlt jedoch ein Eingangssignal, zum Beispiel an Klemme 27.

- Siehe 5.10 Aktivierung des Motorbetriebs für detaillierte Informationen.

Vorgehensweise

- Stellen Sie sicher, dass die Abweichung in der Eingangsspannungssymmetrie höchstens ±3 % beträgt. Ist dies nicht der Fall, so korrigieren Sie die Asymmetrie der Eingangsspannung, bevor Sie fortfahren. Wiederholen Sie dieses Verfahren nach der Spannungskorrektur.
- 2. Stellen Sie sicher, dass die Verkabelung optionaler Geräte den Installationsanforderungen entspricht.
- 3. Stellen Sie sicher, dass alle Bedienvorrichtungen auf AUS stehen.
- 4. Schließen und sichern Sie alle Abdeckungen und Türen des Frequenzumrichters.
- 5. Legen Sie Spannung an den Frequenzumrichter an, aber starten Sie ihn noch nicht. Stellen Sie bei Frequenzumrichtern mit Trennschaltern diese auf EIN, um Spannung an den Frequenzumrichter anzulegen.

7.2 Programmieren des Frequenzumrichters

7.2.1 Parameterübersicht

Die Parameter enthalten verschiedene Einstellungen, mit denen der Umrichter und der Motor konfiguriert und betrieben werden. Diese Parametereinstellungen werden über die verschiedenen Menüs der Bedieneinheit programmiert. Weitere Informationen zu Parametern finden Sie im Programmierhandbuch.

Die Parametereinstellungen sind werkseitig mit einem Standardwert vorbelegt, können aber für ihre individuelle Anwendung konfiguriert werden. Jeder Parameter hat eine Bezeichnung und eine Nummer, die unabhängig vom Programmiermodus unverändert bleiben.

Im Hauptmenümodus sind die Parameter in Gruppen unterteilt. Die erste Stelle der Parameternummer (von links) gibt die Nummer der Parametergruppe an. Die Parametergruppe wird dann bei Bedarf in Untergruppen unterteilt. Ein Beispiel:

Tabelle 48: Beispiel einer Hierarchie von Parametergruppen

Beispiel	Beschreibung
0-** Betrieb/Display	Parametergruppe
0–0* Grundeinstellungen	Parameteruntergruppe
Parameter 0-01 Sprache	Parameter
Parameter 0-02 Hz/UPM Umschaltung	Parameter
Parameter 0-03 Ländereinstellungen	Parameter

7.2.2 Parameternavigation

Verwenden Sie die folgenden LCP-Tasten, um durch die Parameter zu navigieren.

- Navigieren Sie mit den Tasten [▲] [▼] nach oben und nach unten.
- Drücken Sie bei der Bearbeitung eines dezimalen Parameters auf [◄] [►], um links oder rechts von einem Dezimalkomma ein Leerzeichen zu verschieben.
- Drücken Sie [OK], um die Änderung zu akzeptieren.
- Drücken Sie [Cancel], um die Änderung zu verwerfen und den Bearbeitungsmodus zu verlassen.
- Drücken Sie [Back], um die Statusanzeige aufzurufen.
- Drücken Sie einmal [Main Menu], um zurück zum Hauptmenü zu gelangen.

7.2.3 Beispiel für die Programmierung für eine Anwendung mit Regelung ohne Rückführung

Context:

Dieses Verfahren, das zur Konfiguration einer typischen Regelung ohne Rückführung verwendet wird, programmiert den Frequenzumrichter zum Empfang eines 0..10 V DC-Analogsteuersignals an Eingangsklemme 53. Der Frequenzumrichter reagiert, indem er einen 20..50 Hz-Ausgang proportional zum Eingangssignal an den Motor sendet (0-10 V DC = 20-50 Hz). Die Kabelverbindungen für die Einrichtung des externen Geräts sind in Abbildung 59 abgebildet.

Vorgehensweise

- 1. Drücken Sie auf [Quick Menu].
- 2. Wählen Sie Q3 Funktionssätze und drücken Sie [OK].
- 3. Wählen Sie Parameterdatensatz und drücken Sie [OK].
- 4. Wählen Sie Q3-2 Einst. Drehz. o. Rückf. und drücken Sie [OK].
- 5. Wählen Sie Q3-21 Analogsollwert und drücken Sie [OK].
- **6.** Wählen Sie *Parameter 3-02 Minimaler Sollwert* aus. Programmieren Sie den minimalen internen Frequenzumrichtersollwert auf 0 Hz und drücken Sie [OK].
- 7. Wählen Sie *Parameter 3-03 Maximaler Sollwert* aus. Programmieren Sie den maximalen internen Frequenzumrichtersollwert auf 50 Hz und drücken Sie [OK].
- **8.** Wählen Sie *Parameter 6-10 Klemme 53 Skal. Min. Spannung* aus. Programmieren Sie den minimalen externen Spannungssollwert an Klemme 53 auf 0 V und drücken Sie [OK].
- 9. Wählen Sie *Parameter 6-11 Klemme 53 Skal. Max. Spannung* aus. Programmieren Sie den minimalen externen Spannungssollwert an Klemme 53 auf 10 V und drücken Sie [OK].
- **10.** Wählen Sie *Parameter 6-14 Klemme 53 Skal. Min.Soll-/ Wert* aus. Programmieren Sie den minimalen Drehzahlsollwert an Klemme 53 auf 20 Hz und drücken Sie [OK].
- 11. Wählen Sie *Parameter 6-15 Klemme 53 Skal. Max.Soll-/ Wert* aus. Programmieren Sie den maximalen Drehzahlsollwert an Klemme 53 auf 50 Hz und drücken Sie [OK].
 - Wenn Sie jetzt ein externes Gerät, das ein Steuersignal von 0-10 V sendet, an Klemme 53 des Frequenzumrichters anschließen, ist das System betriebsbereit.

HINWEIS

EINRICHTUNGSSTATUS

Wenn sich die Navigationsleiste rechts im Bildschirm unten befindet, ist der Vorgang abgeschlossen.

Beispiel:

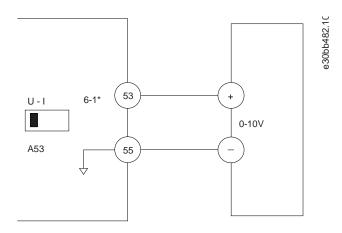


Abbildung 59: Anschlussbeispiel für ein externes Gerät, das ein Steuersignal von 0-10 V sendet

7.2.4 Eingeben von Systeminformationen

Context:

Die folgenden Schritte werden zur Eingabe grundlegender Systeminformationen in den Frequenzumrichter verwendet. Die empfohlenen Parametereinstellungen sind lediglich für die Inbetriebnahme und eine erste Funktionsprüfung bestimmt. Anwendungseinstellungen können abweichen.

Bei diesen Schritten wird zwar von der Verwendung eines Induktionsmotors ausgegangen, Sie können jedoch auch einen Permanentmagnetmotor verwenden. Weitere Informationen zu bestimmten Motortypen finden Sie im produktspezifischen Programmierhandbuch.

HINWEIS

SOFTWARE-DOWNLOAD

Installieren Sie für die Inbetriebnahme per PC die VLT[®] Motion Control Tool MCT 10 Konfigurationssoftware. Eine Basisversion, die für die meisten Anwendungen ausreichend ist, steht zum Download zur Verfügung. Eine erweiterte Version, mit der mehrere Frequenzumrichter gleichzeitig in Betrieb genommen werden können, ist bestellbar.

- Siehe https://www.danfoss.com/en/service-and-support/downloads/?sort=title_asc&filter=download-type%3Dtools.

Vorgehensweise

- 1. Drücken Sie die Taste [Main Menu] am LCP.
- 2. Wählen Sie 0-** Betrieb/Display und drücken Sie auf [OK].
- 3. Wählen Sie 0–0* Grundeinstellungen aus und drücken Sie auf [OK].
- 4. Wählen Sie Parameter 0-03 Ländereinstellungen aus und drücken Sie auf [OK].
- 5. Wählen Sie die zutreffende Option [0] International or [1] Nordamerika aus und drücken Sie auf [OK]. (Diese Aktion ändert die Werkseinstellungen für eine Reihe von grundlegenden Parametern).
- 6. Drücken Sie die Taste [Quick Menu] am LCP und wählen Sie dann Q2 Inbetriebnahme-Menü.
- 7. Ändern Sie bei Bedarf die folgenden Parametereinstellungen. Die Motordaten finden Sie auf dem Motor-Typenschild.
 - A Parameter 0-01 Sprache (Englisch)
 - **B** Parameter 1-20 Motornennleistung [kW] (4,00 kW)
 - C Parameter 1-22 Motorspannung (400 V)
 - D Parameter 1-23 Motorfrequenz (50 Hz)
 - E Parameter 1-24 Motorstrom (9,00 A)
 - F Parameter 1-25 Motornenndrehzahl (1420 UPM)
 - **G** Parameter 5-12 Klemme 27 Digitaleingang (Motorfreilauf invers)
 - H Parameter 0-01 Sprache (0,000 UPM)
 - I Parameter 3-03 Maximaler Sollwert (1500,000 UPM)
 - J Parameter 3-41 Rampenzeit Auf 1 (3,00 s)
 - K Parameter 3-42 Rampenzeit Ab 1 (3,00 s)
 - L Parameter 3-13 Sollwertvorgabe (Verknüpft mit Hand/Auto)
 - M Parameter 1-29 Autom. Motoranpassung (Aus)

7.2.5 Konfiguration der Automatischen Energieoptimierung

Context:

Die Automatische Energie Optimierung (AEO) ist ein Verfahren, das zur Reduzierung des Verbrauchs, der Wärmeentwicklung und der Störungen die Spannungsversorgung zum Motor minimiert.

Vorgehensweise

- 1. Drücken Sie auf die Taste [Main Menu].
- 2. Wählen Sie 1-** Motor/Last und drücken Sie auf [OK].
- 3. Wählen Sie 1–0* Grundeinstellungen und drücken Sie auf [OK].
- 4. Wählen Sie Parameter 1-03 Drehmomentkennlinien und drücken Sie auf [OK].
- 5. Wählen Sie [2] Autom. Energieoptim. CT oder [3] Autom. Energieoptim. VT und drücken Sie auf [OK].

7.2.6 Konfiguration der Automatischen Motoranpassung

Context:

Die Automatische Motoranpassung ist ein Verfahren zur Optimierung der Anpassung zwischen dem Frequenzumrichter und dem Motor.

Der Frequenzumrichter erzeugt zum Glätten des erzeugten Motorstroms ein mathematisches Motormodell. Dieses Verfahren prüft zudem die Eingangsphasensymmetrie der Spannung. Dabei vergleicht das System die tatsächlichen Motorwerte mit den Daten, die Sie in den Parametern 1-20 bis 1-25 eingegeben haben.

HINWEIS

Einige Motoren sind nicht dazu in der Lage, den Test vollständig durchzuführen, und lösen einen Alarm aus.

- In diesem Fall oder wenn ein Ausgangsfilter an den Motor angeschlossen ist, wählen Sie [2] Reduz. Anpassung aus.

Vorgehensweise

- 1. Drücken Sie auf die Taste [Main Menu].
- 2. Wählen Sie 1-** Motor/Last und drücken Sie auf [OK].
- 3. Wählen Sie 1–2* Motordaten aus und drücken Sie auf [OK].
- 4. Wählen Sie Parameter 1-29 Autom. Motoranpassung und drücken Sie auf [OK].
- 5. Wählen Sie [1] Komplette AMA aus und drücken Sie auf [OK].
- 6. Drücken Sie [Hand On] und anschließend [OK].

Der Test wird automatisch durchgeführt und zeigt an, wann er beendet ist.

7.3 Prüfung vor dem Systemstart

7.3.1 Überprüfung der Motordrehung

Context:

HINWEIS

FALSCHE MOTORDREHUNG

Wenn der Motor in die falsche Richtung dreht, kann dies zu einer Beschädigung der Geräte führen.

- Prüfen Sie vor Betrieb des Geräts die Motordrehung, indem Sie diesen kurzzeitig laufen lassen.

Vorgehensweise

- 1. Drücken Sie [Hand On].
- 2. Bewegen Sie den linken Cursor mittels der linken Pfeiltaste links neben das Dezimaltrennzeichen.
- 3. Geben Sie eine UPM ein, die den Motor langsam dreht, und drücken Sie [OK].

Der Motor läuft kurz mit 5 Hz oder der in Parameter 4-12 Min. Frequenz [Hz] eingestellten minimalen Frequenz.

4. Stellen Sie bei einer falschen Motordrehung Parameter 1-06 Rechtslauf auf [1] Invers ein.

7.4 Parametereinstellungen

7.4.1 Übersicht über die Parametereinstellungen

Parameter sind Betriebseinstellungen, auf die Sie über das LCP zugreifen und mit denen der Frequenzumrichter und der Motor für bestimmte Anwendungen konfiguriert und betrieben werden.

Einige Parameter haben unterschiedliche Werkseinstellungen für den internationalen Bereich und für Nordamerika. Eine Liste der verschiedenen Werkseinstellungen finden Sie im Abschnitt "Werkseitige Parametereinstellungen (International/Nordamerika)".

Die Parametereinstellungen werden intern im Frequenzumrichter gespeichert, was folgende Vorteile bietet:

- Sie können die Parametereinstellungen zur Sicherung in den Speicher des LCP übertragen.
- Durch Anschließen des LCP an einzelne Geräte und durch Herunterladen der gespeicherten Parametereinstellungen können Sie schnell mehrere Geräte programmieren.
- Bei der Wiederherstellung von Werkseinstellungen werden die im Speicher des LCP gespeicherten Einstellungen nicht geändert.
- Änderungen gegenüber der Werkseinstellungen sowie Parametervariablen werden gespeichert und können im Quick-Menü angezeigt werden. Siehe Abschnitt "LCP-Menü".

8 Beispiele für Anschlusskonfigurationen

8.1 Anwendungsbeispiele

Die Beispiele in diesem Abschnitt sollen als Schnellreferenz für häufige Anwendungen dienen.

- Parametereinstellungen sind die regionalen Werkseinstellungen, sofern nicht anders angegeben (in *Parameter 0-03 Ländereinstellungen* ausgewählt).
- Neben den Zeichnungen sind die Parameter für die Klemmen und ihre Einstellungen aufgeführt.
- · Wenn Schaltereinstellungen für die analogen Klemmen A53 und A54 erforderlich sind, werden diese ebenfalls dargestellt.

8.1.1 Anschlusskonfiguration für eine automatische Motoranpassung (AMA)

Tabelle 49: Anschlusskonfiguration für AMA mit angeschlossener Kl. 27

	Parameter	
+24 V XD2.10	Funktion	Einstellung
+24 V XD2.10 +24 V XD2.110 D IN XD2.12	Parameter 1-29 Autom. Motoranpassung	[1] Komplette Anpassung
D IN XD2.13	Parameter 5-12 Klemme 27 Digitaleingang	[2]* Motorfreilauf (inv.)
COM XD2.180 D IN XD2.140	*=Werkseinstellung	
D IN XD2.15	Hinweise/Anmerkungen:	
D IN XD2.16 D IN XD2.17 D IN XD2.19	Sie müssen <i>Parametergruppe 1-2* Motordaten</i> entspreche Klemme 27 im Parametertitel entspricht Klemme XD2.14	,,

8.1.2 Anschlusskonfiguration für eine automatische Motoranpassung (AMA) ohne Kl. 27

Tabelle 50: Anschlusskonfiguration für AMA ohne angeschlossene Kl. 27

			Parameter	
		10	Funktion	Einstellung
		e30bu091.10	Parameter 1-29 Autom. Motoranpassung	[1] Komplette Anpassung
+24 V	XD2.10	e30b	Parameter 5-12 Klemme 27 Digitaleingang	[0] Ohne Funktion
+24 V D IN	XD2.110 XD2.120		*=Werkseinstellung	'
D IN COM	XD2.13 XD2.18		Hinweise/Anmerkungen:	
D IN D IN	XD2.14 XD2.15		Sie müssen Parametergruppe 1-2* Motordaten en	tsprechend dem Motor-Typenschild einstellen.
D IN D IN	XD2.16 XD2.17		Klemme 27 im Parametertitel entspricht Klemme	e XD2.14 im Steuerfach.
D IN	XD2.170 XD2.190			
+10V	XD2.6			
A IN A IN	XD2.7 XD2.8			
СОМ	XD2.9			
A OUT COM	XD2.5 XD2.4			
	AD2.40			

8.1.3 Anschlusskonfiguration: Drehzahl

Tabelle 51: Anschlusskonfiguration für analogen Drehzahlsollwert (Spannung)

	Parameter	
3.10	Funktion	Einstellung
=30bn073	Parameter 6-10 Klemme 53 Skal. Min.Spannung	0,07 V
+10V XD2.60	Parameter 6-11 Klemme 53 Skal. Max.Spannung	10 V*
A IN XD2.7	Parameter 6-14 Klemme 53 Skal. Min.Soll-/ Wert	0 Hz
A IN XD2.89 COM XD2.99	Parameter 6-15 Klemme 53 Skal. Max. Soll-/Istwert Wert	50 Hz
A OUT XD2.50 0–10 V	*=Werkseinstellung	
COM XD2.40	Hinweise/Anmerkungen:	
U - I	DIN 37 ist eine Option.	
A53	Klemme 53 im Parametertitel entspricht Klemme XD2.7 im Steue	erfach.

Tabelle 52: Anschlusskonfiguration für analogen Drehzahlsollwert (Strom)

	Parameter	
4.10	Funktion	Einstellung
Longo 88	Parameter 6-12 Klemme 53 Skal. Min.Strom	4 mA*
110 V XD2.W	Parameter 6-13 Klemme 53 Max. Strom	20 mA*
A IN XD2.76	Parameter 6-14 Klemme 53 Skal. Min.Soll-/ Wert	0 Hz
COM XD2.99	Parameter 6-15 Klemme 53 Skal. Max. Soll-/Istwert Wert	50 Hz
COM XD2.45 4-20mA	*=Werkseinstellung	
	Hinweise/Anmerkungen:	
U-1	DIN 37 ist eine Option.	
A53	Klemme 53 im Parametertitel entspricht Klemme XD2.7 im Steuerfach	ı.

Tabelle 53: Anschlusskonfiguration für Drehzahlsollwert (unter Verwendung eines manuellen Potentiometers)

	Parameter	
5.10	Funktion	Einstellung
	Parameter 6-10 Klemme 53 Skal. Min.Spannung	0,07 V
+10V XD2.6	Parameter 6-11 Klemme 53 Skal. Max.Spannung	10 V*
A IN XD2.70 # 5k# A IN XD2.80 # 5k#	Parameter 6-14 Klemme 53 Skal. Min.Soll-/ Wert	0 Hz
COM XD2.9b	Parameter 6-15 Klemme 53 Skal. Max. Soll-/Istwert Wert	50 Hz
COM XD2.40	*=Werkseinstellung	
	Hinweise/Anmerkungen:	
U - I	DIN 37 ist eine Option.	
A53	Klemme 53 im Parametertitel entspricht Klemme XD2.7 im Steuerfach	

Tabelle 54: Anschlusskonfiguration für Drehzahl auf/Drehzahl ab

	Parameter	
+24 V XD2.100	Funktion	Einstellung
+24 V XD2.110 +24 V XD2.110 D IN XD2.12	Parameter 5-10 Klemme 18 Digitaleingang	[8] Start*
D IN XD2.13	Parameter 5-12 Klemme 27 Digitaleingang	[19] Sollw. speich.
COM XD2.18 D IN XD2.14	Parameter 5-13 Klemme 29 Digitaleingang	[21] Drehzahl auf
D IN XD2.15	Parameter 5-14 Klemme 32 Digitaleingang	[22] Drehzahl ab
D IN XD2.160	*=Werkseinstellung	
D IN XD2.19	Hinweise/Anmerkungen:	
	DIN 37 ist eine Option.	
	Klemme 18 im Parametertitel entspricht Klemme XD2.12 im	Steuerfach.
	Klemme 27 im Parametertitel entspricht Klemme XD2.14 im	Steuerfach.
	Klemme 29 im Parametertitel entspricht Klemme XD2.15 im	Steuerfach.
	Klemme 32 im Parametertitel entspricht Klemme XD2.16 im	Steuerfach.

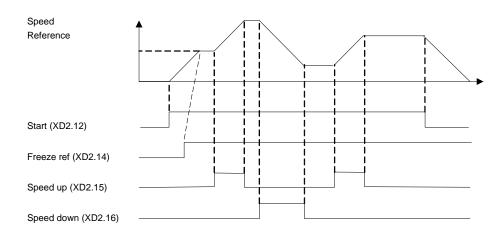


Abbildung 60: Drehzahlkorrektur auf/ab

e30bu077.10

8.1.4 Anschlusskonfiguration: Feedback

Tabelle 55: Anschlusskonfiguration für interne Prozessregelung (4-20 mA / 2-adring)

	Parameter	
3.10	Funktion	Einstellung
+24 V XD2.100	Parameter 6-22 Klemme 54 Skal. Min.Strom	4 mA*
+24 V XD2.110	Parameter 6-23 Klemme 54 Max. Strom	20 mA*
D IN XD2.12	Parameter 6-24 Klemme 54 Skal. Min. Soll-/Istwert	0*
D IN XD2.130	Parameter 6-25 Klemme 54 Skal. Max. Soll- Wert	50*
COM XD2.180 D IN XD2.140	*=Werkseinstellung	1
D IN XD2.15 D IN XD2.16 D IN XD2.17 D IN XD2.19 +10 V XD2.60 A IN XD2.70 A IN XD2.8 COM XD2.9 A OUT XD2.55 COM XD2.40 U - I	Hinweise/Anmerkungen: DIN 37 ist eine Option. Klemme 54 im Parametertitel entspricht Klemme XD2.8 im Steuerfa	ach.

Tabelle 56: Anschlusskonfiguration für interne Prozessregelung (0-10 V / 3-adring)

	Parameter	
9.10	Funktion	Einstellung
+24 V XD2.100 000	Parameter 6-20 Klemme 54 Skal. Min.Spannung	0,07 V
+24 V XD2.100 P	Parameter 6-21 Klemme 54 Skal. Max.Spannung	10 V*
D IN XD2.12	Parameter 6-24 Klemme 54 Skal. Min.Soll-/Istwert	0*
D IN XD2.130 COM XD2.180	Parameter 6-25 Klemme 54 Skal. Max. Soll- Wert	50*
D IN XD2.140 D IN XD2.150	*=Werkseinstellung	
D IN XD2.16 D IN XD2.17 D IN XD2.19 +10V XD2.6 A IN XD2.76 A IN XD2.8 COM XD2.9 A OUT XD2.5 COM XD2.40	Hinweise/Anmerkungen: DIN 37 ist eine Option. Klemme 54 im Parametertitel entspricht Klemme XD2.8 im Steuerfa	ach.

Tabelle 57: Anschlusskonfiguration für interne Prozessregelung (0-10 V / 4-adring)

	Parameter	
0.10	Funktion	Einstellung
+24 V XD2.100 06	Parameter 6-20 Klemme 54 Skal. Min.Spannung	0,07 V
+24 V XD2.10 8	Parameter 6-21 Klemme 54 Skal. Max.Spannung	10 V*
D IN XD2.12	Parameter 6-24 Klemme 54 Skal. Min.Soll-/Istwert	0*
D IN XD2.130 COM XD2.180	Parameter 6-25 Klemme 54 Skal. Max. Soll- Wert	50*
D IN XD2.14	*=Werkseinstellung	
D IN XD2.15 D IN XD2.16 D IN XD2.17 D IN XD2.19 +10V XD2.60 A IN XD2.70 A IN XD2.8 COM XD2.9 A OUT XD2.5 COM XD2.40 0-10 V	Hinweise/Anmerkungen: DIN 37 ist eine Option. Klemme 54 im Parametertitel entspricht Klemme XD2.8 im Steuerfa	ach.

8.1.5 Anschlusskonfiguration: Start/Stopp

Tabelle 58: Anschlusskonfiguration für Start/Stopp-Befehl mit externer Verriegelung

		Parameter	
	1.10	Funktion	Einstellung
+24 V XD2.10	e30bu081	Parameter 5-10 Klemme 18 Digitaleingang	[8] Start*
+24 V XD2.10 +24 V XD2.11	e3(Parameter 5-12 Klemme 27 Digitaleingang	[7] Externe Verriegelung
D IN XD2.12	•	*=Werkseinstellung	
COM XD2.180		Hinweise/Anmerkungen:	
D IN XD2.14		DIN 37 ist eine Option.	
D IN XD2.165 D IN XD2.175 D IN XD2.195		Klemme 18 im Parametertitel entspricht Klemme XD2.1	2 im Steuerfach.
D IN ADZ. 190		Klemme 27 im Parametertitel entspricht Klemme XD2.1	4 im Steuerfach.

Tabelle 59: Anschlusskonfiguration für Start/Stopp-Befehl ohne externe Verriegelung

			Parameter	
		10	Funktion	Einstellung
		e30bu082	Parameter 5-10 Klemme 18 Digitaleingang	[8] Start*
+24 V +24 V	XD2.110 XD2.110	e30k	Parameter 5-12 Klemme 27 Digitaleingang	[7] Externe Verriegelung
D IN	XD2.120	1	*=Werkseinstellung	
D IN COM	D IN XD2.130 COM XD2.180		Hinweise/Anmerkungen:	
D IN D IN D IN	XD2.140 XD2.150 XD2.160		Wenn <i>Parameter 5-12 Klemme 27 Digitaleingang</i> auf <i>L</i> keine Drahtbrücke zu Klemme XD2.14 benötigt.	[0] Ohne Funktion programmiert ist, wird
D IN D IN	XD2.17φ XD2.19φ		DIN 37 ist eine Option.	
			Klemme 18 im Parametertitel entspricht Klemme XD	2.12 im Steuerfach.
	7		Klemme 27 im Parametertitel entspricht Klemme XD	2.14 im Steuerfach.

Tabelle 60: Anschlusskonfiguration für Startfreigabe

		Parameter	
	2.10	Funktion	Einstellung
	e30bu083.10	Parameter 5-10 Klemme 18 Digitaleingang	[8] Start*
+24 V XD2.100—	e30	Parameter 5-11 Klemme 19 Digitaleingang	[52] Startfreigabe
+24 V XD2.110		Parameter 5-12 Klemme 27 Digitaleingang	[7] Externe Verriegelung
D IN XD2.120—— D IN XD2.130——		Parameter 5-40 Relaisfunktion	[167] Startbefehl aktiv
COM XD2.180		*=Werkseinstellung	·
D IN XD2.14 D IN XD2.15	+	Hinweise/Anmerkungen:	
D IN XD2.160		DIN 37 ist eine Option.	
D IN XD2.170 D IN XD2.190		Klemme 18 im Parametertitel entspricht Klemme	XD2.12 im Steuerfach.
+10V XD2.60 A IN XD2.70		Klemme 19 im Parametertitel entspricht Klemme	
A IN XD2.8 COM XD2.9		Klemme 27 im Parametertitel entspricht Klemme	XD2.14 im Steuerfach.
A OUT XD2.5 COM XD2.4			
XD2.210			
▼	—		
XD2.24			
XD2.26			

8.1.6 Anschlusskonfiguration: Start/Stopp

Tabelle 61: Anschlusskonfiguration für Start-/Stopp-Befehl mit der Option Safe Torque Off

	Parameter	
	Funktion	Einstellung
+24 V XD2.100	Parameter 5-10 Klemme 18 Digitaleingang	[Start]*
+24 V XD2.100 +24 V XD2.110	Parameter 5-12 Klemme 27 Digitaleingang	[0] Ohne Funktion
D IN XD2.12	Parameter 5-19 Klemme 37 Sicherer Stopp	[1] S.Stopp/Alarm
D IN XD2.130 COM XD2.180	*=Werkseinstellung	
D IN XD2.140 D IN XD2.150 D IN XD2.160 D IN XD2.170 D IN XD2.190	 XD2.18 *=Werkseinstellung IN XD2.14 Hinweise/Anmerkungen: IN XD2.15 Wenn Parameter 5-12 Klemme 27 Digitaleingang auf [0] Ohne Funktion programmiert ist, keine Drahtbrücke zu Klemme XD2.14 benötigt. 	

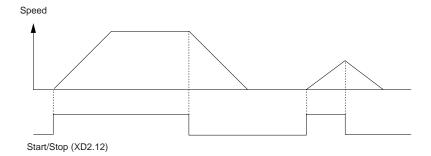


Abbildung 61: Anschlusskonfiguration für Start-/Stopp-Befehl mit Safe Torque Off

Tabelle 62: Anschlusskonfiguration für Puls-Start/Stopp

	Parameter	
2.10	Funktion	Einstellung
+24 V XD2.10	Parameter 5-10 Klemme 18 Digitaleingang	[9] Puls-Start
+24 V XD2.100 +24 V XD2.110	Parameter 5-12 Klemme 27 Digitaleingang	[6] Stopp (invers)
D IN XD2.120	*=Werkseinstellung	
D IN XD2.130 COM XD2.180	Hinweise/Anmerkungen:	
D IN XD2.140 D IN XD2.150 D IN XD2.160	Wenn <i>Parameter 5-12 Klemme 27 Digitaleingang</i> auf <i>[</i> ikeine Drahtbrücke zu Klemme XD2.14 benötigt.	0] Ohne Funktion programmiert ist, wird
D IN XD2.170	DIN 37 ist eine Option.	
	Klemme 18 im Parametertitel entspricht Klemme XD.	2.12 im Steuerfach.
	Klemme 27 im Parametertitel entspricht Klemme XD	2.14 im Steuerfach.

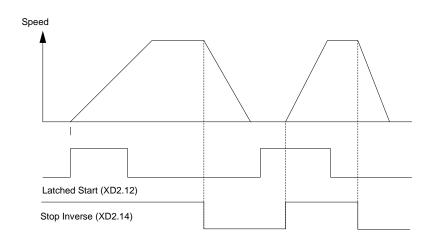


Abbildung 62: Puls-Start/Stopp invers

e130bu087.10

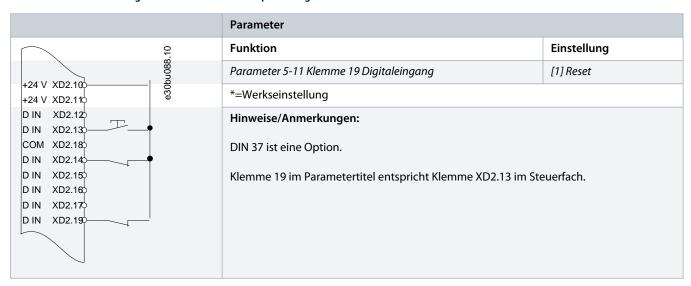


Tabelle 63: Anschlusskonfiguration für Start/Stopp mit Reversierung und 4 Festdrehzahlen

	Parameter	
0.10	Funktion	Einstellung
+24 V XD2.10	Parameter 5-10 Klemme 18 Digitaleingang	[8] Start
+24 V XD2.110	Parameter 5-11 Klemme 19 Digitaleingang	[10] Reversierung*
D IN XD2.12	Parameter 5-12 Klemme 27 Digitaleingang	[0] Ohne Funktion
COM XD2.180	Parameter 5-14 Klemme 32 Digitaleingang	[16] Festsollwert Bit 0
D IN XD2.140 D IN XD2.150	Parameter 5-15 Klemme 33 Digitaleingang	[17] Festsollwert Bit 1
D IN XD2.16	Parameter 3-10 Festsollwert	• Festsollwert 0 = 25%
D IN XD2.17		• Festsollwert 1 = 50%
		• Festsollwert 2 = 75%
		• Festsollwert 3 = 100%
	*=Werkseinstellung	
	Hinweise/Anmerkungen:	
	DIN 37 ist eine Option.	
	Klemme 18 im Parametertitel entspricht Klemme XD2	12 im Stouorfach
	Remine 10 iiii Farameterittei entspricht Remine AD2	.12 IIII Steueriacii.
	Klemme 19 im Parametertitel entspricht Klemme XD2	.13 im Steuerfach.
	Klemme 27 im Parametertitel entspricht Klemme XD2	.14 im Steuerfach.
	Klemme 32 im Parametertitel entspricht Klemme XD2	.16 im Steuerfach.
	Klemme 33 im Parametertitel entspricht Klemme XD2	.17 im Steuerfach.

8.1.7 Anschlusskonfiguration: Externe Alarmquittierung

Tabelle 64: Anschlusskonfiguration für externe Alarmquittierung

8.1.8 Anschlusskonfiguration: RS485

Tabelle 65: Anschlusskonfiguration für RS485-Netzwerkverbindung

		Parameter	
	9.10	Funktion	Einstellung
RS485	e30nq08e	Parameter 8-30 Protokoll	FC-Profil*
XD2.100 XD2.110—+	e30	Parameter 8-31 Adresse	1*
XD2.120——		Parameter 8-32 FC-Baudrate	9600*
		*=Werkseinstellung	
		Hinweise/Anmerkungen:	
		Wählen Sie in den oben genannten Parametern Protok	oll, Adresse und Baudrate.
		DIN 37 ist eine Option.	

8.1.9 Anschlusskonfiguration: Motorthermistor

▲ VORSICHT ▲

THERMISTORISOLIERUNG

Gefahr von Personenschäden oder Sachschäden!

- Sie müssen alle Thermistoren verstärkt oder zweifach isolieren, um die PELV-Anforderungen zu erfüllen.

Tabelle 66: Anschlusskonfiguration für einen Motorthermistor

	Parameter	
0.10	Funktion	Einstellung
+10V XD2.60 A IN XD2.70	Parameter 1-90 Thermischer Motorschutz	[2] Thermistor-Abschalt.
A IN XD2.70	Parameter 1-93 Thermistoranschluss	[1] Analogeingang 53
COM XD2.9	* = Werkseinstellung	
A OUT XD2.56 COM XD2.46	Wenn Sie nur die Warnung wünschen, müssen Sie <i>Thermistor Warnung</i> programmieren.	parameter 1-90 Thermischer Motorschutz auf [1]
U-I	DIN 37 ist eine Option.	
A53	Eingang 53 im Parameter entspricht Klemme XD2.7 im Steuerfach.	

8.1.10 Verdrahtung für Rückspeisung

Tabelle 67: Anschlusskonfiguration für Rückspeisung

			Parameter	
		10	Funktion	Einstellung
		e30bu091.10	Parameter 1-90 Thermischer Motorschutz	100%*
+24 V	XD2.10	e30b	* = Werkseinstellung	
+24 V D IN D IN COM D IN D IN D IN D IN D IN D IN	XD2.110 XD2.120 XD2.130 XD2.140 XD2.140 XD2.150 XD2.160 XD2.170 XD2.130			isung Parameter 1-90 Thermischer Motorschutz auf ing verwendet und keine Rückspeisung aktiviert ist,
+10 V A IN A IN COM A OUT COM	XD2.60 XD2.70 XD2.80 XD2.90 XD2.50 XD2.40			

8.1.11 Anschlusskonfiguration für eine Relaiskonfiguration mit Smart Logic Control

Tabelle 68: Anschlusskonfiguration für eine Relaiskonfiguration mit Smart Logic Control

	Parameter	
2.10	Funktion	Einstellung
XD2.210 XD2.222 XD2.22	Parameter 4-30 Drehgeberüberwachung Funktion	[1] Warnung
∑ / — XD2.225 → 🥳 XD2.235 → 💆	Parameter 4-31 Drehgeber max. Fehlabweichung	100 U/min
	Parameter 4-32 Drehgeber Timeout-Zeit	5 s
XD2.24 XD2.25	Parameter 7-00 Drehgeberrückführung	[2] MCB 102
XD2.26	Parameter 17-11 Inkremental Auflösung [Pulse/U]	1024*
	Parameter 13-00 SL-Controller Modus	[1] On
	Parameter 13-01 SL-Controller Start	[19] Warnung
	Parameter 13-02 SL-Controller Stopp	[44] [Reset]-Taste
	Parameter 13-10 Vergleicher-Operand	[21] Warnnummer
	Parameter 13-11 Vergleicher-Funktion	[1] ≈ (gleich)*
	Parameter 13-12 Vergleicher-Wert	90
	Parameter 13-51 SL-Controller-Ereignis	[22] Vergleicher 0
	Parameter 13-52 SL-Controller Aktion	[32] Digitalausgang A-AUS
	Parameter 5-40 Relaisfunktion	[80] SL-Digitalausgang A
	*=Werkseinstellung	
	Hinweise/Anmerkungen:	
	Wenn der Grenzwert der Drehgeberüberwachung übersch berwachung ausgegeben. Der SLC überwacht Warnung 90, wahr wird, wird Relais 1 ausgelöst. Externe Geräte benötig	. Istwertüberwachung, und wenn diese en möglicherweise eine Wartung.
	Wenn der Istwertfehler jedoch innerhalb von 5 s wieder ur verschwindet, drücken Sie [Reset] am LCP.	iter diese Grenze fallt und die Warnung

8.1.12 Anschlusskonfiguration für eine Tauchpumpe

Die Anlage besteht aus einer Tauchpumpe die von einem Danfoss VLT[®] AQUA Drive und einem Drucktransmitter gesteuert wird. Der Transmitter sendet ein Istwertsignal (4-20 mA) an den Frequenzumrichter, der durch Regelung der Pumpendrehzahl einen konstanten Druck beibehält. Bei der Auslegung eines Frequenzumrichters für eine Tauchpumpenanwendung müssen Sie einige wichtige Aspekte berücksichtigen. Wählen Sie den Frequenzumrichter anhand des Motorstroms aus.

- Der CAN-Motor ist ein Motor mit einer Edelstahlwanne zwischen Läufer und Ständer mit einem größeren Luftspalt mit höherem magnetischen Widerstand als bei normalen Motoren. Dieses schwächere Feld bewirkt, dass die Motoren mit höherem Nennstrom ausgelegt werden als normale Motoren mit gleicher Nennleistung. Der spezielle CAN-Motor wird aufgrund der nassen Installationsbedingungen eingesetzt. Der Frequenzumrichter muss entsprechend dem Ausgangsstrom für die Anlage ausgelegt sein, damit er den Motor bei Nennleistung betreiben kann.
- Die Pumpe enthält Axiallager, die bei einem Betrieb unter der Mindestdrehzahl (in der Regel 30 Hz) beschädigt werden.
- Die Motorreaktanz ist in Tauchpumpenmotoren nicht linear, weshalb die automatische Motoranpassung (AMA) ggf. nicht durchgeführt werden kann. In der Regel werden Tauchpumpen in Verbindung mit langen Motorkabeln eingesetzt, wodurch die nicht lineare Motorreaktanz ggf. eliminiert wird; dadurch wird ermöglicht, dass der Frequenzumrichter eine AMA durchführt. Schlägt die AMA fehl, können Sie die Motordaten über die *Parametergruppe 1-3* Erw. Motordaten* einstellen (siehe Motordatenblatt). Ist die AMA erfolgreich, gleicht der Frequenzumrichter den Spannungsabfall in den langen Motorkabeln aus. Wenn die erweiterten Motordaten manuell eingestellt werden, müssen Sie hierbei zur Optimierung der Systemleistung die Länge des Motorkabels berücksichtigen.
- Es ist wichtig, dass die Anlage bei minimalem Verschleiß von Pumpe und Motor betrieben werden kann. Ein Danfoss-Sinusfilter kann die Beanspruchung der Motorisolierung reduzieren und die Lebensdauer erhöhen (überprüfen Sie die vorhandene Motorisolierung und die dU/dt-Spezifikation des Frequenzumrichters). Die meisten Tauchpumpenhersteller verlangen den Einsatz von Ausgangsfiltern.
- Die EMV-Leistung kann schwierig zu erreichen sein, da das spezielle Pumpenkabel, das für die nassen Bedingungen im Brunnen geeignet ist, in der Regel ungeschirmt ist. Durch den Einsatz eines abgeschirmten Kabels oberhalb des Brunnens und Herstellung einer Verbindung zwischen Schirm und Brunnenleitung können Sie Abhilfe schaffen, falls die Leitung aus Stahl besteht. Ein Sinusfilter reduziert zudem die elektromagnetischen Störungen in ungeschirmten Motorkabeln.

Um eine Beschädigung des Axiallagers der Pumpe zu vermeiden und eine ausreichende und möglichst schnelle Motorkühlung zu gewährleisten, müssen Sie eine möglichst schnelle Rampe der Pumpe vom Stillstand auf die Mindestdrehzahl einstellen. Die meisten Tauchpumpenhersteller empfehlen, dass die Pumpe innerhalb von 2-3 s auf die minimale Drehzahl (30 Hz) hoch gefahren wird. Der VLT® AQUA Drive FC 202 verfügt für solche Anwendungen über vorprogrammierte Ausgangs- und Endrampen. Bei den Ausgangs- und Endrampen handelt es sich um 2 separate Rampen, wobei der Motor bei aktivierter Ausgangsrampe aus dem Stillstand auf die Mindestdrehzahl hochgefahren wird und bei einem erreichend dieser Drehzahl automatisch zu normaler Rampe geschaltet wird. Die Endrampe fährt umgekehrt, von der Mindestdrehzahl bei einem Stopp, die Rampe ab zum Stillstand. Ziehen Sie auch eine Aktivierung der erweiterten Mindestdrehzahlüberwachung in Erwägung.

Nutzen Sie für einen zusätzlichen Schutz der Pumpe die Trockenlauferkennungsfunktion. Weitere Informationen finden Sie im Programmierhandbuch.

Zur Vermeidung von Wasserschlägen können Sie den Pumpenfüllmodus aktivieren. Der Danfoss-Frequenzumrichter kann mithilfe des PID-Reglers vertikale Rohre füllen, um mit einer langsamen Rampe auf des Drucks gemäß einer benutzerdefinierten Geschwindigkeit (Einheiten/Sekunde) durchzuführen. Bei Aktivierung wechselt der Frequenzumrichter in den Pumpenfüllmodus, sobald nach dem Anlauf die Mindestdrehzahl erreicht wird. Es findet eine langsame Rampe auf des Drucks statt, bis dieser einen benutzerdefinierten Füllsollwert erreicht, bei dem der Frequenzumrichter automatisch den Pumpenfüllmodus deaktiviert und mit normaler Regelung mit Rückführung den Betrieb fortsetzt.

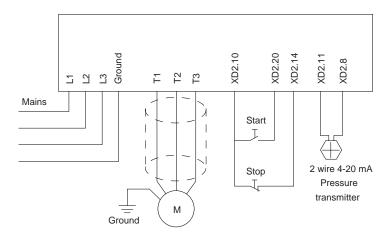


Abbildung 63: Verkabelung für Anwendung mit Tauchpumpe

HINWEIS

Stellen Sie die Einheit für Analogeingang 2 (Klemme XD2.8) auf mA ein (Schalter 202).

Parametereinstellungen

Tabelle 69: Relevante Parameter für Tauchpumpenanwendung

Parameter	
Parameter 1-20 Motornennleistung [kW]/Parameter 1-21 Motornennleistung [HP]	
Parameter 1-22 Motorspannung	
Parameter 1-24 Motorstrom	
Parameter 1-28 Motordrehrichtungsprüfung	
Parameter 1-29 Autom. Motoranpassung = [2] Reduz. Anpassung	

Tabelle 70: Beispieleinstellungen für Tauchpumpe

Parameter	Einstellung
Parameter 3-02 Minimaler Sollwert	Die minimale Sollwerteinheit entspricht der Einheit in <i>Parameter 20-12 Soll-/Istwerteinheit</i>
Parameter 3-03 Maximaler Sollwert	Die maximale Sollwerteinheit entspricht der Einheit in <i>Parameter 20-12 Soll-/Istwerteinheit</i>
Parameter 3-84 Ausgangsrampenzeit	(2 s)
Parameter 3-88 Endrampenzeit	(2 s)
Parameter 3-41 Rampenzeit Auf 1	(8 s je nach Größe)
Parameter 3-42 Rampenzeit Ab 1	(8 s je nach Größe)
Parameter 4-11 Min. Drehzahl [UPM]	(30 Hz)
Parameter 4-13 Max. Drehzahl [UPM]	(50/60 Hz)

e30bu097.10

e30ba728.10

Parameter Einstellung

Verwenden Sie den Assistent für Regelung mit Rückführung unter Quick-Menü, Funktionskonfiguration zum einfachen Einstellen eines PID-Reglers.

Tabelle 71: Einstellungsbeispiel für Rohrfüllmodus

Parameter	Einstellung
Parameter 29-00 Pipe Fill Enable (Leitungsfüllung aktivieren)	Deaktiviert
Parameter 29-04 Pipe Fill Rate (Leitungsfüllrate)	(Istwerteinheiten)
Parameter 29-05 Filled Setpoint (Füllsollwert)	(Istwerteinheiten)

Leistung

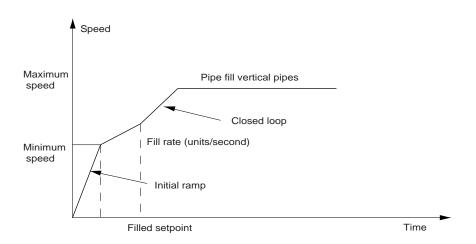


Abbildung 64: Leistungskurve für den Rohrfüllmodus

8.1.13 Anschlusskonfiguration für einen Kaskadenregler

Siehe <u>Abbildung 65</u> für ein Beispiel eines integrierten Basis-Kaskadenreglers mit einer Pumpe mit variabler Drehzahl (Führungspumpe) und zwei Pumpen mit konstanter Drehzahl, einem 4–20 mA-Messumformer sowie Sicherheitsverriegelung des Systems.

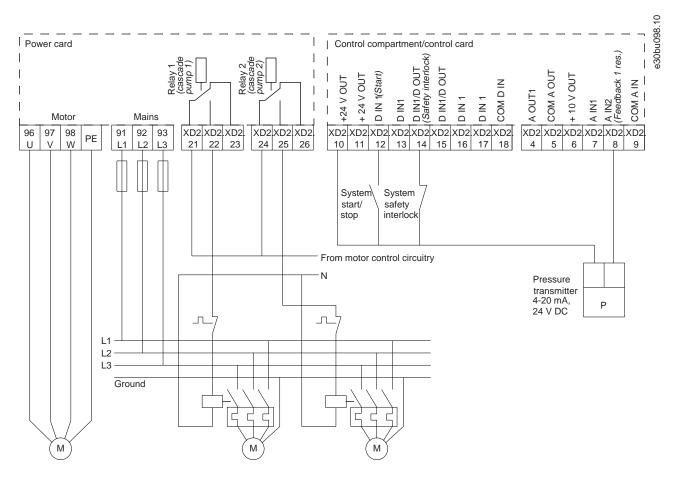


Abbildung 65: Schaltbild für Kaskadenregler

Danfoss

8.1.14 Anschlusskonfiguration für eine Pumpe mit konstanter/variabler Drehzahl

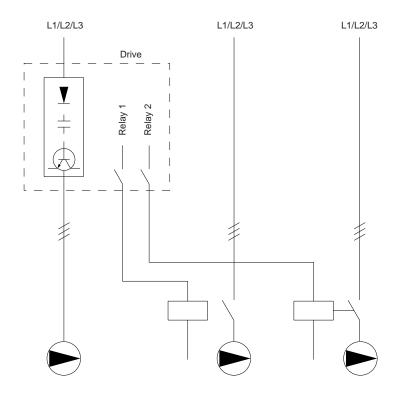


Abbildung 66: Schaltbild für Pumpe mit konstanter/variabler Drehzahl

e30ba376.10

8.1.15 Anschlusskonfiguration für Führungspumpen-Wechsel

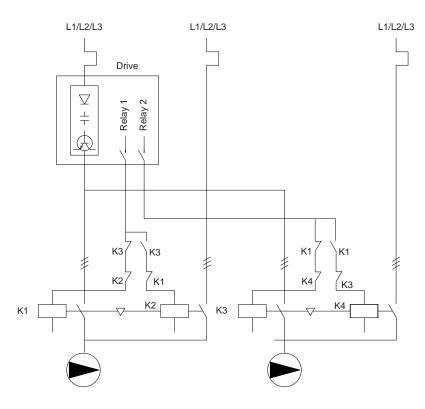


Abbildung 67: Schaltbild für den Führungspumpen-Wechsel

Jede Pumpe muss an zwei Schütze (K1/K2 und K3/K4) mit einer mechanischen Verriegelung angeschlossen sein. Thermische Relais oder andere Motorüberlastschutzeinrichtungen müssen Sie je nach örtlichen Vorschriften und/oder individuellen Anforderungen vorsehen.

- Relais 1 (R1) und Relais 2 (R2) sind die integrierten Relais des Frequenzumrichters.
- Wenn alle Relais stromlos sind, schaltet das erste integrierte Relais, das erregt wird, das Schütz ein, das der vom Relais gesteuerten Pumpe entspricht. Relais 1 schaltet z. B. Schütz K1 ein, das zur Führungspumpe wird.
- K1 sperrt K2 über die mechanische Verriegelung und verhindert das Einschalten der Netzversorgung an den Ausgang des Frequenzumrichters (über K1).
- Ein Hilfsschaltkontakt an K1 verhindert Einschalten von K3.
- Relais 2 steuert Schütz K4 zur Ein-/Ausschaltung der Pumpe mit konstanter Drehzahl.
- Beim Wechsel werden beide Relais stromlos und jetzt wird Relais 2 als erstes Relais erregt.

Eine detaillierte Beschreibung zur Inbetriebnahme von gemischten Pumpen- und Master/Follower-Anwendungen finden Sie im Produkthandbuch VLT[®] Cascade Controller Options MCO 101/102.

30BA377.13

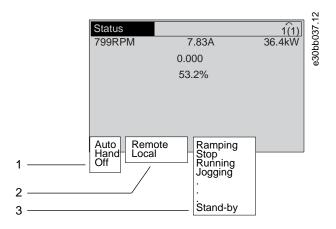
9 Wartung, Diagnose und Fehlersuche und -behebung

9.1 Wartung und Service

Unter normalen Betriebsbedingungen und Lastprofilen ist der Frequenzumrichter über die gesamte Lebensdauer wartungsfrei. Überprüfen Sie den Frequenzumrichter zur Vermeidung von Ausfällen, Gefahren und Schäden in regelmäßigen Abständen auf lose Klemmenverbindungen, übermäßige Staubansammlungen usw. Ersetzen Sie verschlissene oder beschädigte Teile durch von Danfoss autorisierte Ersatzteile. Wenden Sie sich für Service und Support an Ihren örtlichen Danfoss-Händler.

▲ WARNUNG **▲**

UNERWARTETER ANLAUF


Wenn der Frequenzumrichter an das Versorgungsnetz, die DC-Versorgung oder die Zwischenkreiskopplung angeschlossen ist, kann der Motor jederzeit anlaufen, was zum Tod oder zu schweren Verletzungen sowie zu Geräte- oder Sachschäden führen kann! Der Motor kann über einen externen Schalter, einen Feldbus-Befehl, ein Sollwerteingangssignal, über einen Tastendruck an LCP oder LOP, eine Fernbedienung per MCT 10 Konfigurationssoftware oder nach einem guittierten Fehlerzustand anlaufen.

- Drücken Sie vor der Programmierung von Parametern die Taste [Off] am LCP.
- Ist ein unerwarteter Anlauf des Motors gemäß den Bestimmungen zur Personensicherheit unzulässig, trennen Sie den Frequenzumrichter vom Netz.
- Prüfen Sie, ob der Frequenzumrichter, der Motor und alle angetriebenen Geräte betriebsbereit sind.

9.2 Statusmeldungen

9.2.1 Übersicht über Statusmeldungen

Wenn sich der Frequenzumrichter im Zustandsmodus befindet, werden automatisch Zustandsmeldungen im unteren Bereich des LCP-Displays angezeigt. Siehe <u>Abbildung 68</u>.

- 1 Betriebsart. Siehe <u>9.2.2 Statusmeldungen Betriebsart</u>.
- 3 Betriebszustand. Siehe <u>9.2.4 Statusmeldungen</u> -<u>Betriebsstatus</u>.
- 2 Sollwertvorgabe. Siehe <u>9.2.3 Zustandsmeldungen Sollwertvorgabe</u>.

Abbildung 68: Statusanzeige

9.2.2 Statusmeldungen – Betriebsart

Tabelle 72: Betriebsart

Betriebsart	Beschreibung
Aus	Der Frequenzumrichter reagiert erst auf ein Steuersignal, wenn Sie die Taste [Auto on] oder [Hand on] auf der Bedieneinheit drücken.
Remote	Der Frequenzumrichter benötigt externe Befehle, um Funktionen auszuführen. Die Start- und Stoppbefehle werden über die Steuerklemmen und/oder die serielle Schnittstelle gesendet.
Hand	Die Navigationstasten auf dem LCP steuern den Frequenzumrichter. Stoppbefehle, Reset, Reversierung, DC-Bremse und andere Signale, die an den Steuerklemmen anliegen, heben die Hand-Steuerung auf.

9.2.3 Zustandsmeldungen – Sollwertvorgabe

Tabelle 73: Sollwertvorgabe

Sollwertvorgabe	Beschreibung
Fern	Die Drehzahlsollwerte stammen von
	Externen Signalen
	Serielle Kommunikation.
	Interne Festsollwerte.
Lokal	Der Frequenzumrichter nutzt Sollwerte vom LCP.

9.2.4 Statusmeldungen - Betriebsstatus

Tabelle 74: Betriebszustand

Betriebsstatus	Beschreibung	
AC-Bremse	Die AC-Bremse wurde in <i>Parameter 2-10 Bremsfunktion</i> ausgewählt. Die AC-Bremse erzeugt eine Übermagnetisierung des Motors, um ein kontrolliertes Verlangsamen zu erreichen.	
AMA Ende OK	Der Frequenzumrichter hat die Automatische Motoranpassung (AMA) erfolgreich durchgeführt.	
AMA bereit	Die AMA ist startbereit. Drücken Sie zum Starten die Taste [Hand On].	
AMA läuft	Die AMA wird durchgeführt.	
Bremsung	Der Bremschopper ist in Betrieb. Der Bremswiderstand nimmt generatorische Energie auf.	
Max. Brem- sung	Der Bremschopper ist in Betrieb. Die Leistungsgrenze des Bremswiderstands (definiert in <i>Parameter 2-12 Bremswiderstand Leistung (kW)</i>) wurde erreicht.	
Motorfreilauf	 [2] Sie haben Motorfreilauf invers als Funktion eines Digitaleingangs gewählt (Parametergruppe 5-1* Digitaleingange). Die entsprechende Klemme ist nicht angeschlossen. Motorfreilauf über die serielle Schnittstelle aktiviert. 	
Rampenstopp	 [1] Sie haben Rampenstopp in Parameter 14-10 Netzfehler eingestellt. Die Netzspannung liegt unter dem in Parameter 14-11 Netzspannung bei Netzausfall bei Netzfehler festgelegten Wert. Der Frequenzumrichter fährt den Motor auf geregelte Weise herunter. 	

Betriebsstatus	Beschreibung	
Strom hoch	Der Ausgangsstrom des Frequenzumrichters liegt über der in <i>Parameter 4-51 Warnung Strom hoch</i> festgelegten Grenze.	
Strom niedrig	Der Ausgangsstrom des Frequenzumrichters liegt unter der in <i>Parameter 4-52 Warnung Drehz. niedrig</i> festgelegten Grenze.	
DC-Halten	Sie haben DC-Halten in <i>Parameter 1-80 Funktion bei Stopp</i> gewählt und es ist ein Stoppbefehl aktiv. Der Motor wird durch einen DC-Strom gehalten, der in <i>Parameter 2-00 DC-Strom</i> eingestellt ist.	
DC-Stopp	 Der Motor wird durch einen DC-Strom (Parameter 2-01 DC-Bremsstrom) für eine bestimmte Zeit (Parameter 2-02 DC-Bremszeit) gehalten. Sie haben DC-Bremse in Parameter 2-03 DC-Bremse Ein [UPM] aktiviert und es ist ein Stoppbefehl aktiv. Sie haben DC-Bremse (invers) als Funktion eines Digitaleingangs gewählt (Parametergruppe 5-1* Digitaleingänge). Die entsprechende Klemme ist nicht aktiv. Die DC-Bremse wurde über die serielle Schnittstelle aktiviert. 	
Istwert hoch	Die Summe aller aktiven Istwerte liegt über der Istwertgrenze in Parameter 4-57 Warnung Istwert hoch.	
Istwert niedr.	Die Summe aller aktiven Istwerte liegt unter der Istwertgrenze in Parameter 4-56 Warnung Istwert niedrig.	
Drehz. speich.	 Der Fernsollwert ist aktiv, wodurch die aktuelle Drehzahl gehalten wird. [20] Sie haben Drehzahl speichern als Funktion eines Digitaleingangs gewählt (Parametergruppe 5-1* Digitaleingänge). Die entsprechende Klemme ist aktiv. Eine Drehzahlregelung ist nur über die Klemmenfunktionen Drehzahl auf und Drehzahl ab möglich. Rampe halten ist über die serielle Schnittstelle aktiviert. 	
Aufforderung Ausgangsfre- quenz spei- chern	Sie haben einen Befehl "Ausgangsfrequenz speichern" gesendet, der Motor bleibt jedoch gestoppt, bis er ein Startfreigabe-Signal empfängt.	
Sollw. spei- chern	[19] Sie haben Sollwert speichern als Funktion eines Digitaleingangs gewählt (Parametergruppe 5-1* Digitaleingänge). Die entsprechende Klemme ist aktiv. Der Frequenzumrichter speichert den aktuellen Sollwert. Der Sollwert lässt sich jetzt über die Klemmenfunktionen Drehzahl auf und Drehzahl ab ändern.	
JOG-Aufford.	Sie haben einen Festdrehzahl JOG-Befehl gesendet, der Frequenzumrichter stoppt den Motor jedoch so lange, bis er ein Startfreigabe-Signal über einen Digitaleingang empfängt.	
Festdrehzahl JOG	 Der Motor läuft wie in <i>Parameter 3-19 Festdrehzahl Jog [UPM]</i> programmiert. [14] Sie haben Festdrehzahl JOG als Funktion eines Digitaleingangs gewählt (<i>Parametergruppe 5-1* Digitaleingänge</i>). Die entsprechende Klemme (z. B. Klemme 29) ist aktiv. Die Festdrehzahl JOG-Funktion wird über die serielle Schnittstelle aktiviert. Die Festdrehzahl JOG-Funktion wurde als Reaktion für eine Überwachungsfunktion gewählt (z. B. Kein Signal). Die Überwachungsfunktion ist aktiv. 	
Motortest	In Parameter 1-80 Funktion bei Stopp ist [2] Motortest ausgewählt. Ein Stoppbefehl ist aktiv. Um sicherzustellen, dass ein Motor an den Frequenzumrichter angeschlossen ist, legt dieser einen Testdauerstrom an den Motor an.	
Überspan- nungskon- trolle	In <i>Parameter 2-17 Überspannungssteuerung</i> ist [2] Aktiviert die Überspannungssteuerung aktiviert. Der angeschlossene Motor versorgt den Frequenzumrichter mit generatorischer Energie. Die Überspannungssteuerung passt das U/f-Verhältnis an, damit der Motor geregelt läuft und der Frequenzumrichter sich nicht abschaltet.	
Ausfall Leis- tungseinheit	(Nur bei Frequenzumrichtern mit externer 24-V-DC-Versorgung.) Die Netzversorgung des Frequenzumrichters ist ausgefallen oder nicht vorhanden, die externen 24 V versorgen jedoch die Steuerkarte.	

Betriebsstatus	Beschreibung	
Protection Mode	Der Protection Mode ist aktiviert. Der Frequenzumrichter hat einen kritischen Zustand (einen Überstrom oder eine Überspannung) erfasst.	
	• Um eine Abschaltung zu vermeiden, wird die Taktfrequenz auf 1,5 kHz reduziert, falls <i>Parameter 14-55 Ausgangsfilter</i> auf [2] Fester Sinusfilter eingestellt ist. Andernfalls wird die Taktfrequenz auf 1,0 kHz reduziert.	
	Sofern möglich, endet der Protection Mode nach ca. 10 s.	
	• Der Protection Mode kann in Parameter 14-26 WR-Fehler Abschaltverzögerung eingeschränkt werden.	
Schnellstopp	Der Motor verzögert unter Verwendung von Parameter 3-81 Rampenzeit Schnellstopp.	
	• [4] Sie haben Schnellstopp invers als Funktion eines Digitaleingangs gewählt (Parametergruppe 5-1* Digitaleingänge). Die entsprechende Klemme ist nicht aktiv.	
	Die Schnellstopp-Funktion wurde über die serielle Schnittstelle aktiviert.	
Rampen	Der Frequenzumrichter beschleunigt/verzögert den Motor gemäß aktiver Rampe auf/ab. Der Motor hat den Sollwert, einen Grenzwert oder den Stillstand noch nicht erreicht.	
Sollw. hoch	Die Summe aller aktiven Sollwerte liegt über der Sollwertgrenze in Parameter 4-55 Warnung Sollwert hoch.	
Sollw. niedrig	Die Summe aller aktiven Sollwerte liegt unter der Sollwertgrenze in Parameter 4-54 Warnung Sollwert niedrig.	
Ist = Sollwert	Der Frequenzumrichter läuft im Sollwertbereich. Der Istwert entspricht dem Sollwert.	
Startaufforder- ung	Sie haben einen Startbefehl gesendet, der Frequenzumrichter stoppt den Motor jedoch so lange, bis er ein Startfreigabesignal über Digitaleingang empfängt.	
In Betrieb	Der Frequenzumrichter treibt den Motor an.	
Energiespar- modus	Der Energiesparmodus ist aktiviert. Dies bedeutet, dass der Motor aktuell gestoppt ist, jedoch automatisch wieder anläuft, wenn erforderlich.	
Drehzahl hoch	Die Motordrehzahl liegt über dem in Parameter 4-53 Warnung Drehz. hoch eingestellten Wert.	
Drehzahl nie- drig	Die Motordrehzahl liegt unter dem in Parameter 4-52 Warnung Drehz. niedrig eingestellten Wert.	
Standby	Im Autobetrieb startet der Frequenzumrichter den Motor mit einem Startsignal von einem Digitaleingang oder einer seriellen Schnittstelle.	
Startverzöger- ung	Sie haben in <i>Parameter 1-71 Startverzögerung</i> eine Verzögerungszeit zum Start eingestellt. Ein Startbefehl ist aktiviert und der Motor startet nach Ablauf der Anlaufverzögerungszeit.	
FWD+REV akt.	[12] Start nur Rechts und [13] Start nur Links wurden als Funktionen für zwei verschiedene Digitaleingänge gewählt (Parametergruppe 5-1* Digitaleingänge). Der Motor startet abhängig von der aktivierten Klemme im Vorwärtsoder Rückwärtslauf.	
Stopp	Der Frequenzumrichter hat einen Stoppbefehl über eine der folgenden Möglichkeiten erhalten:	
	• LCP.	
	Digitaleingang.	
	Serielle Kommunikation.	
Abschaltung	Ein Alarm ist aufgetreten und der Umrichter hat den Motor angehalten. Sobald Sie die Ursache des Alarms behoben haben, können Sie den Frequenzumrichter durch eine der folgenden Aktionen quittieren: • [Reset] drücken	
	Remote über Steuerklemmen	

Betriebsstatus	Beschreibung
Abschaltblock- ierung	Ein Alarm ist aufgetreten und der Umrichter hat den Motor angehalten. Sobald Sie die Ursache des Alarms behoben haben, müssen Sie die Netzversorgung des Frequenzumrichters aus- und wieder einschalten, um die Blockierung aufzuheben. Sie können dann den Frequenzumrichter manuell durch eine der folgenden Möglichkeiten quittieren:
	• [Reset] drücken
	Remote über Steuerklemmen
	Über die serielle Schnittstelle

9.3 Warnungen und Alarmmeldungen

9.3.1 Warnungs- und Alarmtypen

Fehler

Ein Alarm weist auf eine Störung hin, die sofortige Aufmerksamkeit erfordert. Die Störung führt immer zu einer Abschaltung oder einer Abschaltblockierung. Setzen Sie den Frequenzumrichter nach einem Alarm auf eine der folgenden Weisen zurück:

- Durch Drücken der Taste [Reset]/[Off/Reset].
- Über einen Digitaleingang mit der Funktion "Reset".
- Über die serielle Schnittstelle.
- Durch automatisches Ouittieren.

Warnung

Ein Zustand, der in Fehlersituationen eintritt, z. B. bei einer Übertemperatur des Frequenzumrichters oder wenn der Frequenzumrichter den Motor, den Prozess oder den Mechanismus schützt. Der Frequenzumrichter verhindert einen Neustart, bis die Ursache der Störung behoben wurde. Starten Sie den Frequenzumrichter zum Beenden des Alarmzustands neu. Sie dürfen die Abschaltung nicht zu Zwecken der Personensicherheit verwenden.

Abschaltblockierung

Der Frequenzumrichter wechselt in Störungssituationen zum Selbstschutz in diesen Zustand. Der Frequenzumrichter erfordert einen Eingriff, z. B. bei einem Kurzschluss am Ausgang. Sie können eine Abschaltblockierung nur durch Unterbrechen der Netzversorgung, Beheben der Fehlerursache und Neustart des Frequenzumrichters aufheben. Der Neustart wird verzögert, bis der Fehlerzustand quittiert wird, z. B. über die [Reset]-Taste am LCP. In einigen Fällen erfolgt die Quittierung automatisch (durch vorherige Programmierung). Sie dürfen die Abschaltblockierung nicht zu Zwecken der Personensicherheit verwenden.

LCP-Benachrichtigungen

Wenn ein Fehler ausgelöst wird, zeigt das LCP die Art des Fehlers (Alarm, Warnung oder Abschaltblockierung) an und zeigt die Alarmoder Warnnummer im Display an.

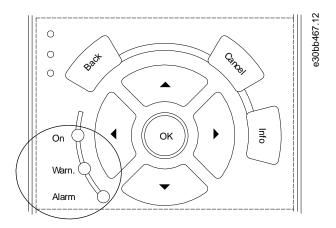


Abbildung 69: Kontrollanzeigen zur Statusanzeige

Tabelle 75:

Art des Fehlers	Warnanzeigeleuchte	Alarmanzeigeleuchte
Warnung	On	Aus
Fehler	Aus	Ein (blinkt)
Abschaltblockierung	On	Ein (blinkt)

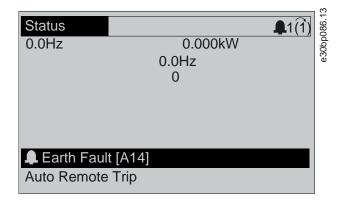


Abbildung 70: Alarmbeispiel

9.3.2 WARNUNG/ALARM 2, Signalfehler

Ursache

Der Frequenzumrichter zeigt diese Warnung oder diesen Alarm nur an, wenn Sie dies in *Parameter 6-01 Signalausfall Funktion* programmiert haben. Das Signal an einem der Analogeingänge liegt unter 50 % des Mindestwerts, der für diesen Eingang programmiert ist. Dieser Zustand kann durch ein gebrochenes Kabel oder ein defektes Gerät, das das Signal sendet, verursacht werden.

Fehlerbehebung

- Prüfen Sie die Anschlüsse an allen analogen Eingangsklemmen.
 - Steuerkartenklemmen 53 und 54 für Signale, Klemme 55 Bezugspotenzial.
- Prüfen Sie, ob die Programmierung des Frequenzumrichters und die Schaltereinstellungen mit dem Analogsignaltyp übereinstimmen.

9.3.3 WARNUNG/ALARM 3, Kein Motor

Ursache

Am Ausgang des Frequenzumrichters ist kein Motor angeschlossen.

9.3.4 WARNUNG/ALARM 4, Netzasymmetrie

Ursache

Versorgungsseitig fehlt eine Phase, oder die Unsymmetrie in der Netzspannung ist zu hoch. Diese Meldung erscheint im Falle eines Fehlers im Eingangsgleichrichter. Programmieren Sie die Optionen in *Parameter 14-12 Funktion bei Netzphasenfehler*.

Fehlerbehebung

Kontrollieren Sie die Versorgungsspannung und die Versorgungsströme zum Frequenzumrichters.

9.3.5 WARNUNG 5, DC-hoch

Ursache

Die Zwischenkreisspannung (DC) liegt oberhalb der Überspannungswarnungsgrenze des Steuersystems. Die Grenze ist abhängig von der Nennspannung des Frequenzumrichters. Das Gerät bleibt aktiv.

9.3.6 WARNUNG 6, DC-Zwischenkreisspannung niedrig

Ursache

Die Zwischenkreisspannung (DC) liegt unter dem Spannungsgrenzwert des Steuersystems. Die Grenze ist abhängig von der Nennspannung des Frequenzumrichters. Das Gerät bleibt aktiv.

9.3.7 WARNUNG/ALARM 7, DC-Überspannung

Ursache

Überschreitet die Zwischenkreisspannung den Grenzwert, schaltet der Frequenzumrichter nach einiger Zeit ab.

Fehlerbehebung

- · Schließen Sie einen Bremswiderstand an.
- · Verlängern Sie die Rampenzeit.
- Ändern Sie den Rampentyp.
- Aktivieren Sie die Funktionen in Parameter 2-10 Bremsfunktion.
- Erhöhen Sie Parameter 14-26 WR-Fehler Abschaltverzögerung.
- Wenn der Alarm bzw. die Warnung während eines Spannungsbruchs auftritt, verwenden Sie den kinetischen Speicher (*Parameter 14-10 Netzausfall-Funktion*).

9.3.8 WARNUNG/ALARM 8, DC-Unterspannung

Ursache

Wenn die DC-Zwischenkreisspannung unter die Unterspannungsgrenze fällt, überprüft der Frequenzumrichter, ob eine externe 24-V-DC-Versorgung angeschlossen ist. Wenn keine externe 24-V DC-Versorgung angeschlossen ist, schaltet der Frequenzumrichter nach einer festgelegten Zeitverzögerung ab. Die Zeitverzögerung hängt von der Gerätegröße ab.

Fehlerbehebung

- Prüfen Sie, ob die Versorgungsspannung mit der Nennspannung des Frequenzumrichters übereinstimmt.
- Prüfen Sie die Eingangsspannung.
- Prüfen Sie die Vorladekreisschaltung.

9.3.9 WARNUNG/ALARM 9, Wechselrichterüberlast

Ursache

Der Frequenzumrichter wurde zu lange Zeit mit mehr als 100 % Ausgangsstrom belastet und steht vor der Abschaltung. Der Zähler für das elektronisch thermische Überlastrelais gibt bei 98 % eine Warnung aus und schaltet bei 100 % mit einem Alarm ab. Sie können den Frequenzumrichter erst dann zurücksetzen, wenn der Zähler erneut unter 90 % fällt.

Fehlerbehebung

- Vergleichen Sie den angezeigten Ausgangsstrom auf dem LCP mit dem Nennstrom des Frequenzumrichters.
- Vergleichen Sie den auf der LCP angezeigten Ausgangsstrom mit dem gemessenen Motorstrom.
- Lassen Sie die thermische Belastung des Frequenzumrichters auf dem LCP anzeigen und überwachen Sie den Wert. Bei Betrieb des Frequenzumrichters über dem Dauer-Nennstrom sollte der Zählerwert steigen. Bei Betrieb des Frequenzumrichters unter dem Dauer-Nennstrom sollte der Zählerwert sinken.

9.3.10 WARNUNG/ALARM 10, Motorüberlasttemperatur

Ursache

Die ETR-Funktion (elektronischer Wärmeschutz) hat eine thermische Überlastung des Motors errechnet.

Wählen Sie eine der folgenden Optionen:

- Der Frequenzumrichter gibt eine Warnung oder einen Alarm aus: Warnung wenn der Zähler >90 % erreicht und Parameter 1-90
 Thermischer Motorschutz auf Warnung eingestellt ist.
- Der Frequenzumrichter schaltet mit Alarm ab, wenn der Zähler 100 % erreicht und *Parameter 1-90 Thermischer Motorschutz* auf Abschaltung eingestellt ist.

Der Fehler tritt auf, wenn der Motor zu lange mit mehr als 100 % überlastet ist.

Fehlerbehebung

- Prüfen Sie den Motor auf Überhitzung.
- Prüfen Sie, ob der Motor mechanisch überlastet ist.
- Prüfen Sie die Einstellung des richtigen Motorstroms in Parameter 1-24 Motorstrom.
- Vergewissern Sie sich, dass die Motordaten in den Parametern 1-20 bis 1-25 korrekt eingestellt sind.
- Wenn ein externer Lüfter verwendet wird, stellen Sie in Parameter 1-91 Fremdbelüftung sicher, dass dieser ausgewählt ist.
- Das Ausführen von AMA in *Parameter 1-29 Autom. Motoranpassung* stimmt den Frequenzumrichter genauer auf den Motor ab und reduziert die thermische Belastung.

9.3.11 WARNUNG/ALARM 11, Motor Thermistor Übertemp.

Der Motorthermistor zeigt an, dass die Motortemperatur zu hoch ist.

Fehlerbehebung

- · Prüfen Sie den Motor auf Überhitzung.
- Prüfen Sie, ob der Thermistor angeschlossen ist.
- Prüfen Sie, ob der Motor mechanisch überlastet ist.
- Prüfen Sie bei Verwendung von Klemme 53 oder 54, ob der Thermistor korrekt zwischen Klemme 53 oder 54
 (Analogspannungseingang) und Klemme 50 (+10-Volt-Versorgung) angeschlossen ist. Prüfen Sie auch, ob der Schalter für Klemme 53 (oder 54) auf Spannung eingestellt ist. Prüfen Sie, ob Parameter 1-93 Thermistoranschluss Klemme 53 (oder 54) auswählt.
- Prüfen Sie bei Verwendung der Klemmen 18, 19, 31, 32 oder 33 (Digitaleingänge), ob der Thermistor korrekt zwischen der verwendeten Digitaleingangsklemme (nur Digitaleingang PNP) und Klemme 50 angeschlossen ist. Wählen Sie die zu verwendende Klemme in *Parameter 1-93 Thermistoranschluss* aus.

9.3.12 WARNUNG/ALARM 12, Drehmomentgrenze

Ursache

Das Drehmoment hat den Wert in *Parameter 4-16 Momentengrenze motorisch* oder den Wert in *Parameter 4-17 Momentengrenze generatorisch* überschritten. In *Parameter 14-25 Abschaltverzögerung bei Drehmomentgrenze* können Sie diese Warnung von einer Warnung in eine Warnung gefolgt von einem Alarm ändern.

Fehlerbehebung

- Wenn das System die motorische Drehmomentgrenze während Rampe-Auf überschreitet, verlängern Sie die Rampe-Auf Zeit.
- Wenn das System die generatorische Drehmomentgrenze während der Rampe-Ab Zeit überschreitet, verlängern Sie die Rampe-Ab Zeit.
- Wenn die Drehmomentgrenze im Betrieb auftritt, erhöhen Sie ggf. die Drehmomentgrenze. Stellen Sie dabei sicher, dass das System mit höherem Drehmoment sicher arbeitet.
- Überprüfen Sie die Anwendung auf zu starke Stromaufnahme vom Motor.

9.3.13 WARNUNG/ALARM 13, Überstrom

Ursache

Fehlerbehebung

- Entfernen Sie die Netzversorgung und prüfen Sie, ob die Motorwelle gedreht werden kann.
- Kontrollieren Sie, ob die Motorgröße für den Frequenzumrichter passend ist.
- Prüfen Sie die Richtigkeit der Motordaten in den Parametern 1-20 bis 1-25.

9.3.14 ALARM 14, Erdschluss

Ursache

Es wurde ein Erdschluss zwischen einer Ausgangsphase und Erde festgestellt, entweder zwischen Frequenzumrichter und Motor oder direkt im Motor. Die Stromwandler erkennen Erdschlüsse, indem sie den Ausgangsstrom vom Frequenzumrichter und vom Motor sowie den erzeugten Eingangsstrom in den Frequenzumrichter messen. Ein Erdschluss wird ausgegeben, wenn die Abweichung der 2 Ströme zu groß ist. Der Ausgangsstrom des Frequenzumrichters muss mit dem Eingangsstrom des Frequenzumrichters identisch sein.

Fehlerbehebung

- Schalten Sie den Frequenzumrichter aus und beheben Sie den Erdschluss.
- Prüfen Sie, ob Erdschlüsse im Motor vorliegen, indem Sie mit Hilfe eines Megaohmmeters den Widerstand der Motorkabel und des Motors zur Masse messen.
- Setzen Sie jeden potenziellen Einzelversatz in den 3 Stromwandlern im Frequenzumrichter zurück. Führen Sie die manuelle Initialisierung oder eine komplette AMA durch. Diese Methode ist nach dem Austausch der Leistungskarte am relevantesten.

9.3.15 ALARM 15, Inkomp. HW

Ursache

Ein eingebautes Optionsmodul ist mit der aktuellen Hardware oder Software der Steuerkarte nicht kompatibel.

Fehlerbehebung

Notieren Sie den Wert der folgenden Parameter und wenden Sie sich an Danfoss.

- Parameter 15-40 FC-Typ.
- Parameter 15-41 Leistungsteil.
- Parameter 15-42 Nennspannung.
- Parameter 15-43 Softwareversion.
- Parameter 15-45 Typencode (aktuell).
- Parameter 15-49 Steuerkarte SW-Version.
- Parameter 15-50 Leistungsteil SW-Version.
- Parameter 15-60 Option installiert.
- · Parameter 15-61 SW-Version Option (für jeden Optionssteckplatz).

9.3.16 ALARM 16, Kurzschluss

Ursache

Es liegt ein Kurzschluss im Motor oder in den Motorkabeln vor.

Fehlerbehebung

⚠ WARNUNG ⚠

HOCHSPANNUNG

Bei Anschluss ans Versorgungsnetz, DC-Versorgung oder Zwischenkreiskopplung führen Frequenzumrichter Hochspannung. Erfolgen Installation, Inbetriebnahme und Wartung nicht durch qualifiziertes Personal, kann dies zu schweren Verletzungen oder sogar zum Tod führen!

- Installation, Inbetriebnahme und Wartung dürfen ausschließlich von qualifiziertem Personal durchgeführt werden.
- · Trennen Sie vor dem weiteren Vorgehen die Netzversorgung.
- Schalten Sie den Frequenzumrichter aus und beheben Sie den Kurzschluss.

9.3.17 WARNUNG/ALARM 17, Steuerwort-Timeout

Ursache

Es besteht keine Kommunikation zum Frequenzumrichter. Die Warnung ist nur aktiv, wenn *Parameter 8-04 Steuerwort-Timeoutfunktion* NICHT auf *[0] Aus* eingestellt ist.

Wenn Parameter 8-04 Steuerwort-Timeoutfunktion auf [5] Stopp und Abschaltung eingestellt ist, wird zuerst eine Warnung angezeigt und dann fährt der Frequenzumrichter bis zur Abschaltung mit Ausgabe eines Alarms herunter.

Fehlerbehebung

- Überprüfen Sie die Anschlüsse am Kabel der seriellen Schnittstelle.
- Erhöhen Sie Parameter 8-03 Steuerwort Timeout-Zeit.
- Überprüfen Sie die Funktion der Kommunikationsgeräte.
- Prüfen Sie auf korrekte EMV-Installation.

9.3.18 WARNUNG/ALARM 20, Temp. Eingangsfehler

Ursache

Der Temperaturfühler ist nicht angeschlossen.

9.3.19 WARNUNG/ALARM 21, Parameterfehler

Ursache

 $Der \, Parameter \, liegt \, außerhalb \, des \, Bereichs. \, Die \, Parameter nummer \, wird \, im \, Display \, angezeigt.$

Fehlerbehebung

• Stellen Sie die betroffenen Parameter auf einen gültigen Wert ein.

9.3.20 WARNUNG/ALARM 22, Mech. Bremse

Ursache

Der Wert dieser Warnung/dieses Alarms zeigt den Typ der Warnung/des Alarms an.

0 = Drehmomentsollwert wurde nicht vor dem Timeout erreicht (Parameter 2-27 Drehmoment Rampenzeit).

1 = erwarteter Bremsenistwert vor dem Timeout nicht empfangen (*Parameter 2-23 Mech. Bremse Verzögerungszeit, Parameter 2-25 Bremse lüften Zeit*).

9.3.21 WARNUNG 23, Interne Lüfter

Ursache

Die Lüfterwarnfunktion ist eine Schutzfunktion, die prüft, ob der Lüfter läuft bzw. installiert ist. Sie können die Lüfterwarnung in *Parameter 14-53 Lüfterüberwachung ([0] Deaktiviert*) deaktivieren.

Bei Frequenzumrichtern mit DC-Lüftern ist ein Istwertsensor in den Lüfter integriert. Wenn der Lüfter einen Laufbefehl erhält und kein Istwert vom Sensor vorliegt, wird dieser Alarm ausgegeben. Bei Frequenzumrichtern mit AC-Lüftern wird die Spannung zum Lüfter überwacht.

Fehlerbehebung

- Prüfen Sie, ob der Lüfter einwandfrei funktioniert.
- Schalten Sie die Netzversorgung zum Frequenzumrichter aus und wieder ein. Überprüfen Sie dabei, ob der Lüfter beim Start kurz läuft.
- Prüfen Sie die Fühler an der Steuerkarte.

9.3.22 WARNUNG 24, Externer Lüfterfehler

Ursache

Die Lüfterwarnfunktion ist eine Schutzfunktion, die prüft, ob der Lüfter läuft bzw. installiert ist. Sie können die Lüfterwarnung in *Parameter 14-53 Lüfterüberwachung ([0] Deaktiviert*) deaktivieren.

Bei Frequenzumrichtern mit DC-Lüftern ist ein Istwertsensor in den Lüfter integriert. Wenn der Lüfter einen Laufbefehl erhält und kein Istwert vom Sensor vorliegt, wird diese Warnung ausgegeben. Bei Frequenzumrichtern mit AC-Lüftern wird die Spannung zum Lüfter überwacht.

Fehlerbehebung

- Prüfen Sie, ob der Lüfter einwandfrei funktioniert.
- Schalten Sie die Netzversorgung zum Frequenzumrichter aus und wieder ein. Überprüfen Sie dabei, ob der Lüfter beim Start kurz
- Prüfen Sie die Fühler am Kühlkörper.

9.3.23 WARNUNG 25, Bremswiderstand Kurzschluss

Ursache

Der Frequenzumrichter überwacht den Bremswiderstand während des Betriebs. Ein Kurzschluss bricht die Bremsfunktion abgebrochen und verursacht eine Warnung. Sie können den Frequenzumrichter weiterhin betreiben, allerdings ohne Bremsfunktion.

Fehlerbehebung

Schalten Sie den Frequenzumrichter aus und tauschen Sie den Bremswiderstand aus (siehe Parameter 2-15 Bremswiderstand Test).

9.3.24 WARNUNG/ALARM 26, Bremswiderstand Leistungsgrenze

Ursache

Die auf den Bremswiderstand übertragene Leistung wird als Mittelwert für die letzten 120 s berechnet. Die Berechnung erfolgt anhand der Zwischenkreisspannung und des in *Parameter 2-16 AC-Bremse max. Strom eingestellten Bremswiderstandswerts. Strom.* Die Warnung ist aktiv, wenn die übertragene Bremsleistung mehr als 90 % der Bremswiderstandsleistung beträgt. Ist [2] Abschaltung in *Parameter 2-13 Bremsleistungsüberwachung* gewählt, schaltet der Frequenzumrichter mit einem Alarm ab, wenn die übertragene Bremsleistung 100 % erreicht.

9.3.25 WARNUNG/ALARM 27, Bremschopperfehler

Ursache

Der Frequenzumrichter überwacht den Bremstransistor während des Betriebs. Bei einem Kurzschluss bricht er die Bremsfunktion ab und gibt die Warnung aus. Sie können den Frequenzumrichter weiterhin betreiben; aufgrund des Kurzschlusses des Bremstransistors überträgt der Frequenzumrichter jedoch eine hohe Leistung an den Bremswiderstand, auch wenn der Umrichter den Motor nicht bremst.

Fehlerbehebung

· Schalten Sie den Frequenzumrichter aus und entfernen Sie den Bremswiderstand.

9.3.26 WARNUNG/ALARM 28, Bremswiderstandstest fehlgeschlagen

Ursache

Der Bremswiderstand ist nicht angeschlossen oder funktioniert nicht.

Fehlerbehebung

• Überprüfen Sie Parameter 2-15 Bremswiderstand Test.

9.3.27 ALARM 29, Kühlkörpertemp.

Ursache

Der Kühlkörper überschreitet seine maximal zulässige Temperatur. Sie können den Temperaturfehler erst dann quittieren, wenn die Temperatur eine definierte Kühlkörpertemperatur wieder unterschritten hat. Die Abschalt- und Quittiergrenzen sind je nach der Leistungsgröße des Frequenzumrichters unterschiedlich.

Fehlerbehebung

- · Zu hohe Umgebungstemperatur.
- Zu lange Motorkabel.
- · Falsche Abstände zur Luftzirkulation über und unter dem Frequenzumrichter.
- · Blockierte Luftzirkulation des Frequenzumrichters.
- Beschädigter Kühlkörperlüfter
- · Verschmutzter Kühlkörper.

9.3.28 ALARM 30 U-Phasenfehler

Ursache

Motorphase U zwischen dem Frequenzumrichter und dem Motor fehlt.

Fehlerbehebung

⚠ WARNUNG **⚠**

HOCHSPANNUNG

Bei Anschluss ans Versorgungsnetz, DC-Versorgung oder Zwischenkreiskopplung führen Frequenzumrichter Hochspannung. Erfolgen Installation, Inbetriebnahme und Wartung nicht durch qualifiziertes Personal, kann dies zu schweren Verletzungen oder sogar zum Tod führen!

- Installation, Inbetriebnahme und Wartung dürfen ausschließlich von qualifiziertem Personal durchgeführt werden.
- Trennen Sie vor dem weiteren Vorgehen die Netzversorgung.
- Schalten Sie den Frequenzumrichter aus und prüfen Sie Motorphase U.

9.3.29 ALARM 31 V-Phasenfehler

Ursache

Motorphase V zwischen dem Frequenzumrichter und dem Motor fehlt.

Fehlerbehebung

A WARNUNG A

HOCHSPANNUNG

Bei Anschluss ans Versorgungsnetz, DC-Versorgung oder Zwischenkreiskopplung führen Frequenzumrichter Hochspannung. Erfolgen Installation, Inbetriebnahme und Wartung nicht durch qualifiziertes Personal, kann dies zu schweren Verletzungen oder sogar zum Tod führen!

- Installation, Inbetriebnahme und Wartung dürfen ausschließlich von qualifiziertem Personal durchgeführt werden.
- Trennen Sie vor dem weiteren Vorgehen die Netzversorgung.
- Schalten Sie den Frequenzumrichter aus und prüfen Sie Motorphase V.

9.3.30 ALARM 32, W-Phasenfehler

Ursache

Motorphase W zwischen dem Frequenzumrichter und dem Motor fehlt.

Fehlerbehebung

⚠ WARNUNG ⚠

HOCHSPANNUNG

Bei Anschluss ans Versorgungsnetz, DC-Versorgung oder Zwischenkreiskopplung führen Frequenzumrichter Hochspannung. Erfolgen Installation, Inbetriebnahme und Wartung nicht durch qualifiziertes Personal, kann dies zu schweren Verletzungen oder sogar zum Tod führen!

- Installation, Inbetriebnahme und Wartung dürfen ausschließlich von qualifiziertem Personal durchgeführt werden.
- · Trennen Sie vor dem weiteren Vorgehen die Netzversorgung.
- Schalten Sie den Frequenzumrichter aus und prüfen Sie Motorphase W.

9.3.31 ALARM 33, Einschaltstrom-Fehler

Ursache

Eine zu hohe Anzahl von Netz-Einschaltungen ist innerhalb zu kurzer Zeit aufgetreten.

Fehlerbehebung

• Lassen Sie den Frequenzumrichter auf Betriebstemperatur abkühlen.

9.3.32 WARNUNG/ALARM 34, Feldbus-Kommunikationsfehler

Ursache

Der Feldbus auf der Kommunikations-Optionskarte funktioniert nicht.

9.3.33 WARNUNG/ALARM 35, Optionsfehler

Ursache

Ein Optionsalarm wird empfangen. Der Alarm ist optionsspezifisch. Die wahrscheinlichste Ursache ist ein Netz-Einschaltungs- oder Kommunikationsfehler.

9.3.34 WARNUNG/ALARM 36, Netzausfall

Ursache

Diese Warnung bzw. dieser Alarm ist nur aktiv, wenn die Versorgungsspannung zum Frequenzumrichter unterbrochen wird und Parameter 14-10 Netzausfall-Funktion nicht auf [0] Deaktiviert eingestellt ist.

Fehlerbehebung

· Prüfen Sie die Sicherungen zum Frequenzumrichter und die Netzversorgung zum Gerät.

9.3.35 ALARM 37, Phasenasymmetrie

Ursache

Es gibt eine Asymmetrie zwischen den Außenleitern.

9.3.36 ALARM 38, Interner Fehler

Ursache

Wenn ein interner Fehler auftritt, wird eine in Tabelle 76 definierte Codenummer angezeigt.

Fehlerbehebung

- Schalten Sie die Stromversorgung aus und wieder ein.
- Stellen Sie sicher, dass die Optionen richtig montiert sind.
- Prüfen Sie, ob lose Anschlüsse vorliegen oder Anschlüsse fehlen.

Wenden Sie sich ggf. an Ihren Danfoss-Lieferanten oder -Service. Notieren Sie zuvor die Artikelnummer, um weitere Hinweise zur Fehlersuche und -behebung zu erhalten.

Tabelle 76: Interne Fehlercodes

Nummer	Text
0	Sie können die serielle Schnittstelle nicht initialisieren. Wenden Sie sich an Ihren Danfoss-Lieferanten oder den Danfoss-Service.
256-258	Die EEPROM-Daten der Leistungskarte sind defekt oder zu alt. Ersetzen Sie die Leistungskarte.
512-519	Interner Fehler. Wenden Sie sich an Ihren Danfoss-Lieferanten oder den Danfoss-Service.
783	Parameterwert außerhalb min./max. Grenzen.
1024-1284	Interner Fehler. Wenden Sie sich an Ihren Danfoss-Lieferanten oder den Danfoss-Service.
1299	Die Software der Option in Steckplatz A ist zu alt.
1300	Die Software der Option in Steckplatz B ist zu alt.
1302	Die Software der Option in Steckplatz C1 ist zu alt.
1315	Die Software der Option in Steckplatz A wird nicht unterstützt/ist nicht zulässig.
1316	Die Software der Option in Steckplatz B wird nicht unterstützt / ist nicht zulässig.
1318	Die Software der Option in Steckplatz C1 wird nicht unterstützt / ist nicht zulässig.
1379-2819	Interner Fehler. Wenden Sie sich an Ihren Danfoss-Lieferanten oder den Danfoss-Service.
1792	Hardware-Reset des digitalen Signalprozessors.
1793	Vom Motor abgeleitete Parameter konnten nicht korrekt zum digitalen Signalprozessor übertragen werden.
1794	Leistungsdaten wurden bei der Netz-Einschaltung nicht korrekt zum digitalen Signalprozessor übertragen.

Nummer	Text
1795	Der digitale Signalprozessor hat zu viele unbekannte SPI-Telegramme empfangen. Der Frequenzumrichter verwendet diesen Fehlercode auch, wenn die MCO nicht korrekt einschaltet. Diese Situation kann sich durch schlechten EMV-Schutz oder falsche Erdung ergeben.
1796	RAM-Kopierfehler.
2561	Ersetzen Sie die Steuerkarte.
2820	LCP/Stapelüberlauf.
2821	Überlauf serielle Schnittstelle.
2822	Überlauf USB-Anschluss.
3072-5122	Parameterwert außerhalb seiner Grenzen.
5123	Option in Steckplatz A: Hardware mit Steuerkartenhardware nicht kompatibel.
5124	Option in Steckplatz B: Hardware mit Steuerkartenhardware nicht kompatibel.
5125	Option in Steckplatz C0: Hardware mit Steuerkartenhardware nicht kompatibel.
5126	Option in Steckplatz C1: Hardware mit Steuerkartenhardware nicht kompatibel.
5376-6231	Interner Fehler. Wenden Sie sich an Ihren Danfoss-Lieferanten oder den Danfoss-Service.

9.3.37 ALARM 39, Kühlkörpertemperaturgeber

Ursache

Kein Istwert vom Kühlkörpertemperatursensor.

Das Signal vom thermischen IGBT-Sensor steht an der Leistungskarte nicht zur Verfügung. Es könnte ein Problem mit der Leistungskarte, der IGBT-Ansteuerkarte oder der Flachbandleitung zwischen der Leistungskarte und der Gate-Ansteuerkarte vorliegen.

9.3.38 WARNUNG 40, Digitalausgangsklemme 27 ist überlastet

Fehlerbehebung

- Prüfen Sie die Last an Klemme 27 oder beseitigen Sie den Kurzschluss.
- Überprüfen Sie Parameter 5-00 Schaltlogik und Parameter 5-01 Klemme 27 Funktion.

9.3.39 WARNUNG 41, Digitalausgangsklemme 29 ist überlastet

Fehlerbehebung

- Prüfen Sie die Last an Klemme 29 oder beseitigen Sie den Kurzschluss.
- Überprüfen Sie Parameter 5-00 Schaltlogik und Parameter 5-02 Klemme 29 Funktion.

9.3.40 WARNUNG 42, Überl. X30/6-7

Fehlerbehebung

Für Klemme X30/6:

- Prüfen Sie die Last an der Klemme oder beseitigen Sie den Kurzschluss.
- Überprüfen Sie Parameter 5-32 Klemme X30/6 Digitalausgang (MCB 101) (VLT® General Purpose I/O MCB 101).

Für Klemme X30/7:

- Prüfen Sie die Last an der Klemme oder beseitigen Sie den Kurzschluss.
- Überprüfen Sie Parameter 5-33 Klemme X30/7 Digitalausgang (MCB 101) (VLT® General Purpose I/O MCB 101).

9.3.41 ALARM 43, Ext. Versorgung

Schließen Sie entweder eine externe 24-V-DC-Versorgung an oder legen Sie über *Parameter 14-80 Ext. 24 VDC für Option*, [0] *Nein* fest, dass Sie keine externe Versorgung verwenden. Eine Änderung in *Parameter 14-80 Ext. 24 VDC für Option* erfordert, dass Sie einen Ausund Einschaltzyklus durchführen.

Ursache

VLT® Extended Relay Option MCB 113 ist ohne externe 24-V-DC-Versorgung installiert.

Fehlerbehebung

Ergreifen Sie eine der folgenden Maßnahmen:

- Schließen Sie eine externe 24 V DC-Versorgung an.
- Legen Sie über Parameter 14-80 Ext. 24 VDC, [0] Nein für Option fest, dass Sie keine externe Versorgung verwenden. Eine Änderung in Parameter 14-80 Ext. 24 VDC für Option erfordert, dass Sie einen Aus- und Einschaltzyklus durchführen.

9.3.42 ALARM 45, Erdschluss 2

Ursache

Erdschluss.

Fehlerbehebung

- Prüfen Sie, ob Frequenzumrichter und Motor richtig geerdet und alle Anschlüsse fest angezogen sind.
- Prüfen Sie, ob der korrekte Kabelguerschnitt verwendet wurde.
- Prüfen Sie die Motorkabel auf Kurzschlüsse oder Ableitströme.

9.3.43 ALARM 46, Umr. Versorgung

Ursache

Die Stromversorgung der Leistungskarte liegt außerhalb des Bereichs. Ein weiterer Grund kann ein beschädigter Kühlkörperlüfter sein.

Das Schaltnetzteil (SMPS) auf der Leistungskarte erzeugt drei Spannungsversorgungen:

- 24 V.
- 5 V.
- ±18 V.

Bei Versorgung über die VLT^{*} 24 V DC Supply MCB 107 werden nur die Spannungen 24 V und 5 V überwacht. Bei Versorgung mit dreiphasiger Netzspannung überwacht er alle drei Versorgungsspannungen.

Fehlerbehebung

- Überprüfen Sie, ob die Leistungskarte defekt ist.
- Überprüfen Sie, ob die Steuerkarte defekt ist.
- Überprüfen Sie, ob die Optionskarte defekt ist.
- · Ist eine 24-V-DC-Versorgung angeschlossen, überprüfen Sie, ob diese einwandfrei funktioniert.
- Prüfen Sie auf einen beschädigten Kühlkörperlüfter.

9.3.44 WARNUNG 47, 24V Fehler

Ursache

Die Stromversorgung der Leistungskarte liegt außerhalb des Bereichs.

Das Schaltnetzteil (SMPS) auf der Leistungskarte erzeugt drei Spannungsversorgungen:

- 24 V
- 5 V
- ±18 V

Fehlerbehebung

• Überprüfen Sie, ob die Leistungskarte defekt ist.

9.3.45 WARNUNG 48, 1,8 V-Fehler

Ursache

Die 1,8-V-DC-Versorgung der Steuerkarte liegt außerhalb des Toleranzbereichs. Die Spannungsversorgung wird an der Steuerkarte gemessen.

Fehlerbehebung

- Überprüfen Sie, ob die Steuerkarte defekt ist.
- Wenn eine Optionskarte eingebaut ist, prüfen Sie, ob eine Überspannungsbedingung vorliegt.

9.3.46 WARNUNG 49, Drehz.grenze

Ursache

Die Warnung wird angezeigt, wenn die Drehzahl nicht mit dem in *Parameter 4-11 Min. Drehzahl [UPM]* und *Parameter 4-13 Max. Drehzahl [UPM]* festgelegten Bereich übereinstimmt. Wenn die Drehzahl unter der Grenze in *Parameter 1-86 Abschaltungsdrehzahl niedrig [UPM]*) liegt (außer beim Starten oder Stoppen), schaltet der Frequenzumrichter ab.

9.3.47 ALARM 50, AMA-Kalibrierungsfehler

Fehlerbehebung

• Wenden Sie sich an Ihren Danfoss-Lieferanten oder -Service.

9.3.48 ALARM 51, AMA-Motordaten überprüfen

Ursache

Die Einstellung von Motorspannung, Motorstrom und/oder Motorleistung ist vermutlich falsch.

Fehlerbehebung

Überprüfen Sie die Einstellungen in den Parametern 1-20 bis 1-25.

9.3.49 ALARM 52, AMA-Motornennstrom Inom niedrig

Ursache

Der Motorstrom ist zu niedrig.

Fehlerbehebung

• Überprüfen Sie die Einstellungen in Parameter 1-24 Motornennstrom.

9.3.50 ALARM 53, AMA Motor zu groß

Ursache

Der Motor ist für die Durchführung der AMA zu groß.

9.3.51 ALARM 54, AMA Motor zu klein

Ursache

Der Motor ist für das Durchführen der AMA zu klein.

9.3.52 ALARM 55, AMA-Daten außerhalb des Bereichs

Ursache

Die AMA lässt sich nicht ausführen, da die Parameterwerte des Motors außerhalb des zulässigen Bereichs liegen.

9.3.53 ALARM 56, AMA Abbruch

Ursache

Die AMA wurde manuell unterbrochen.

9.3.54 ALARM 57, AMA-interner Fehler

Ursache

Versuchen Sie einen Neustart der AMA. Wiederholte Neustarts können zu einer Überhitzung des Motors führen.

9.3.55 ALARM 58, AMA-interner Fehler

Fehlerbehebung

Setzen Sie sich mit dem Danfoss -Lieferanten in Verbindung.

9.3.56 WARNUNG 59, Stromgrenze

Ursache

Der Strom ist höher als der Wert in Parameter 4-18 Stromgrenze.

Fehlerbehebung

- Vergewissern Sie sich, dass die Motordaten in den Parametern 1-20 bis 1-25 korrekt eingestellt sind.
- Erhöhen Sie bei Bedarf die Stromgrenze. Achten Sie darauf, dass das System sicher mit einer höheren Grenze arbeiten kann.

9.3.57 ALARM 60, Externe Verriegelung

Ursache

Ein Digitaleingangssignal gibt eine Fehlerbedingung außerhalb des Frequenzumrichters an. Im Steuerfach sind die folgenden 3 Relaiskontakte in Reihe an einen Digiteingang angeschlossen, der als thermisches Überlastrelais verwendet wird:

- KFJ.1 überwacht die Wärme im Eingangsleistungs-Optionsschrank.
- KFJ.2 überwacht die Wärme im Ausgangsfilterschrank.
- KFJ.3 überwacht die Wärme im Eingangsfilterschrank.

Wenn sich die thermischen Schalter in einem dieser Schränke aufgrund von Übertemperatur öffnen, schaltet der Frequenzumrichter mit Externe Verriegelung [A60] ab.

Fehlerbehebung

- Öffnen Sie das Steuerfach und überprüfen Sie die Leuchten in den Relais KFJ.1, KFJ.2 und KFJ.3. Wenn keine Leuchten vorhanden sind, überprüfen Sie auf andere externe Verriegelungen.
- · Beseitigen Sie den externen Fehlerzustand.
- Legen Sie zur Fortsetzung des Normalbetriebs eine Spannung von 24 V DC an die Klemme an, die für externe Verriegelung programmiert ist.
- · Quittieren Sie den Frequenzumrichter.

9.3.58 WARNUNG/ALARM 61, Istwertfehler

Ursache

Der Frequenzumrichter hat eine Abweichung zwischen der berechneten Drehzahl und der Drehzahlmessung vom Istwertgeber festgestellt.

Fehlerbehebung

- Überprüfen Sie die Einstellungen für Warnung/Alarm/Deaktivierung in *Parameter 4-30 Drehgeberüberwachung Funktion*.
- Stellen Sie die tolerierbare Istwertfehlerzeit in Parameter 4-32 Drehgeber Timeout-Zeit ein.

9.3.59 WARNUNG 62, Ausgangsfrequenz bei maximaler Grenze

Ursache

Die Ausgangsfrequenz hat den in Parameter 4-19 Max. Ausgangsfrequenz eingestellten Wert erreicht.

Fehlerbehebung

- Überprüfen Sie die Anwendung auf mögliche Ursachen.
- Erhöhen Sie die Ausgangsfrequenzgrenze. Achten Sie darauf, dass das System sicher mit einer höheren Ausgangsfrequenz arbeiten kann.

Die Warnung wird ausgeblendet, wenn die Ausgangsfrequenz unter die Höchstgrenze fällt.

9.3.60 ALARM 63, Mechanische Bremse schwach

Ursache

Der Motorstrom hat "Bremse öffnen bei Motorstrom" innerhalb des Zeitfensters für die Anlaufverzögerungszeit nicht überschritten.

9.3.61 WARNUNG 64, Motorspannung

Ursache

Die Last- und Drehzahlverhältnisse erfordern eine höhere Motorspannung als die aktuelle Zwischenkreisspannung zur Verfügung stellen kann.

9.3.62 WARNUNG/ALARM 65, Steuerkarte Übertemperatur

Ursache

Die Abschalttemperatur der Steuerkarte hat die Obergrenze überschritten.

Fehlerbehebung

- Stellen Sie sicher, dass Umgebungs- und Betriebstemperatur innerhalb der Grenzwerte liegen.
- Prüfen Sie die Lüfterfunktion.
- Prüfen Sie die Steuerkarte.

9.3.63 WARNUNG 66, Temperatur Kühlkörper zu niedrig

Ursache

Die Temperatur des Frequenzumrichters ist zu kalt für den Betrieb. Diese Warnung basiert auf den Messwerten des Temperaturfühlers im IGBT-Modul.

Fehlerbehebung

- · Erhöhen Sie die Umgebungstemperatur der Einheit.
- Sie können den Frequenzumrichter durch Einstellung von *Parameter 2-00 DC-Haltestrom* auf 5 % und *Parameter 1-80 Funktion bei Stopp* mit einem Stillstandsstrom versorgen lassen, wenn der Motor gestoppt ist.

9.3.64 ALARM 67, Optionsmodulkonfiguration geändert

Ursache

Sie haben seit dem letzten Netz-Aus eine oder mehrere Optionen hinzugefügt oder entfernt.

Fehlerbehebung

• Überprüfen Sie, ob die Konfigurationsänderung absichtlich erfolgt ist, und quittieren Sie das Gerät.

9.3.65 ALARM 68, Sicherer Stopp

Ursache

Safe Torque Off (STO) wurde aktiviert.

Fehlerbehebung

• Legen Sie zum Fortsetzen des Normalbetriebs 24 V DC an Klemme 37 an, und senden Sie dann ein Reset-Signal (über Bus, Digital oder durch Drücken der Taste [Reset]).

9.3.66 ALARM 69, Umrichter Übertemperatur

Ursache

Der Temperaturfühler der Leistungskarte erfasst entweder eine zu hohe oder eine zu niedrige Temperatur.

Fehlerbehebung

- Stellen Sie sicher, dass Umgebungs- und Betriebstemperatur innerhalb der Grenzwerte liegen.
- Prüfen Sie auf verstopfte Filter.
- Prüfen Sie die Lüfterfunktion.
- Prüfen Sie die Leistungskarte.

9.3.67 ALARM 70, Ungültige FC-Konfiguration:

Ursache

Die aktuelle Kombination aus Steuerkarte und Leistungskarte ist ungültig.

Fehlerbehebung

• Wenden Sie sich mit dem Typencode vom Typenschild und den Teilenummern der Karten an den Danfoss-Lieferanten, um die Kompatibilität zu überprüfen.

9.3.68 ALARM 71, PTC 1 Sicherer Stopp

Ursache

Da der Motor zu warm ist, hat die VLT® PTC-Thermistorkarte MCB 112 die Funktion Safe Torque Off (STO) aktiviert.

Fehlerbehebung

 Sobald die Motortemperatur ein akzeptables Niveau erreicht hat und der Digitaleingang von MCB 112 deaktiviert wird, senden Sie ein Reset-Signal über Bus oder Digitaleingang oder durch Drücken der [Reset]-Taste.

9.3.69 ALARM 72, Gefährl.Fehler

Ursache

Safe Torque Off (STO) mit Abschaltblockierung.

Fehlerbehebung

Es ist eine unerwartete Kombination von STO-Befehlen aufgetreten.

- VLT° PTC-Thermistorkarte MCB 112 aktiviert Klemme X44/10, die Funktion Safe Torque Off (STO) wird jedoch nicht aktiviert.
- MCB 112 ist das einzige Gerät, das die Funktion Safe Torque Off (STO) verwendet (kann durch Auswahl des Parameters [4] PTC
 1 Alarm oder [5]PTC 12 Warnung in Parameter 5-19 Klemme 37 Sicherer Stopp angegeben werden), die Funktion Safe Torque Off
 (STO) ist aktiviert und Klemme X44/10 ist nicht aktiviert.

9.3.70 WARNUNG 73, Sicherer Stopp, autom. Wiederanlauf

Ursache

STO ist aktiviert.

Fehlerbehebung

Wenn automatischer Wiederanlauf aktiviert ist, kann der Motor nach Behebung des Fehlers starten.

9.3.71 ALARM 74, PTC-Thermistor

Ursache

Die PTC funktioniert nicht. Alarm mit Bezug zur VLT[®] PTC-Thermistorkarte MCB 112.

9.3.72 ALARM 75, Illeg. Profilwahl

Ursache

Legen Sie den Parameterwert nicht bei laufendem Motor fest.

Fehlerbehebung

Schalten Sie den Motor vor dem Erstellen eines MCO-Profils in Parameter 8-10 Steuerwortprofil aus.

9.3.73 Warnung 76, Leistungsteil Konfiguration

Ursache

Die benötigte Zahl von Leistungsteilen stimmt nicht mit der erfassten Anzahl aktiver Leistungsteile überein.

Fehlerbehebung

 Beim Austausch eines Moduls in Baugröße F tritt dies auf, wenn leistungsspezifische Daten in der Leistungskarte des Moduls nicht mit dem Rest des Frequenzumrichters übereinstimmen. Bitte bestätigen Sie, dass die Bestellnummer des Ersatzteils und seiner Leistungskarte übereinstimmen.

9.3.74 WARNUNG 77, Reduzierte Leistung

Ursache

Der Frequenzumrichter arbeitet im reduzierten Leistungsmodus (mit weniger als der erlaubten Anzahl von Wechselrichtern). Die Warnung wird bei einem Aus- und Einschaltzyklus erzeugt, wenn der Frequenzumrichter auf den Betrieb mit weniger Wechselrichtern eingestellt wird und eingeschaltet bleibt.

9.3.75 ALARM 78, Drehg. Abw.

Ursache

Die Differenz zwischen dem Sollwert und dem Istwert hat den in Parameter 4-35 Drehgeber-Fehler festgelegten Wert überschritten.

Fehlerbehebung

- Deaktivieren Sie die Funktion oder wählen Sie einen Alarm / eine Warnung in Parameter 4-34 Drehgeberüberwachung Funktion aus.
- Überprüfen Sie die Mechanik im Bereich von Last und Motor. Überprüfen Sie die Rückführungsanschlüsse vom Motordrehgeber zum Frequenzumrichter.
- Wählen Sie eine Motor-Istwertfunktion in Parameter 4-30 Drehgeberüberwachung Funktion aus.
- Stellen Sie das Drehgeber-Fehlerband in Parameter 4-35 Drehgeber-Fehler und Parameter 4-37 Drehgeber-Fehler Rampe ein.

9.3.76 ALARM 79, Ungültige Leistungsteilkonfiguration

Ursache

Die Bestellnummer der Skalierkarte ist falsch oder sie ist nicht installiert. Der Anschluss MK102 ist auf der Leistungskarte ggf. nicht installiert.

9.3.77 ALARM 80, Initialisiert

Ursache

Ein manueller Reset hat alle Parametereinstellungen mit Werkseinstellungen initialisiert. Führen Sie einen Reset des Frequenzumrichters durch, um den Alarm zu beheben.

9.3.78 ALARM 81, CSIV beschädigt

Ursache

Die Syntax der CSIV-Datei ist fehlerhaft.

9.3.79 ALARM 82, CSIV-Parameterfehler

Ursache

CSIV-Fehler bei Parameterinitialisierung.

9.3.80 ALARM 83, Illegale Kombination von Optionen

Ursache

Die installierten Optionen sind nicht kompatibel.

9.3.81 ALARM 84, keine Sicherheitsoption

Ursache

Die Sicherheitsoption wurde ohne allgemeinen Reset entfernt.

Fehlerbehebung

Schalten Sie die Sicherheitsoption wieder zu.

9.3.82 ALARM 85, Gefährl. F. PB

Ursache

PROFIBUS/PROFIsafe-Fehler.

9.3.83 ALARM 88, Option Detection (Optionserkennung)

Ursache

Es wurde eine Änderung der Optionen erkannt. Parameter 14-89 Option Detection (Optionserkennung) ist auf [0] Konfiguration eingefroren eingestellt und die Optionen wurden geändert.

Fehlerbehebung

- · Um die Änderung der Optionen zu aktivieren, stellen Sie Parameter 14-89 Option Detection (Optionserkennung) ein.
- Stellen Sie alternativ die richtige Optionskonfiguration wieder her.

9.3.84 WARNUNG 89, Mechanische Bremse rutscht

Ursache

Die Hubbremsenüberwachung erkennt eine Motordrehzahl > 10 U/min.

9.3.85 ALARM 90, Drehgeber Überwachung

Fehlerbehebung

Überprüfen Sie die Verbindung zur Drehgeber-/Resolver-Option und tauschen Sie anschließend den VLT[®] Encoder Input MCB 102 oder VLT[®] Resolver Input MCB 103 aus.

9.3.86 ALARM 91, Falsche Einstellungen für Analogeingang 54

Fehlerbehebung

 Stellen Sie den Schalter S202 in die Stellung OFF (Spannungseingang) eingestellt sein, wenn ein KTY-Sensor an Analogeingangsklemme 54 angeschlossen ist.

9.3.87 ALARM 99, Blockierter Rotor

Ursache

9.3.88 WARNUNG/ALARM 104, Zirkulationslüfterfehler

Ursache

Der Lüfter arbeitet nicht. Die Lüfterüberwachung überprüft, ob der Lüfter bei Netz-Einschaltung des Frequenzumrichters oder bei Einschalten des Mischlüfters läuft. Sie können den Zirkulationslüfterfehler in *Parameter 14-53 Lüfterüberwachung* als Warnung oder Alarm konfigurieren.

Fehlerbehebung

· Schalten Sie den Frequenzumrichter aus und wieder ein, um zu sehen, ob die Warnung bzw. der Alarm zurückkehrt.

9.3.89 WARNUNG/ALARM 122, Unerw. Motordrehung

Ursache

Der Frequenzumrichter führt eine Funktion aus, die einen Stillstand des Motors erfordert, z. B. DC-Halten für PM-Motoren.

9.3.90 WARNUNG 163, ATEX ETR Warn. Stromgrnz.

Ursache

Der Frequenzumrichter hat die charakteristische Kurve im Betrieb für mehr als 50 s überschritten. Die Warnung wird bei 83 % der zulässigen thermischen Überlast aktiviert und bei 85 % deaktiviert.

9.3.91 ALARM 164, ATEX ETR I-Grenze Alarm

Ursache

Bei einem Betrieb oberhalb der Kennlinie für mehr als 60 s in einem Zeitraum von 600 s wird der Alarm ausgelöst und der Frequenzumrichter abgeschaltet.

9.3.92 WARNUNG 165, ATEX ETR Freq.Lim.Warning (ATEX ETR f-Grenze Warnung)

Ursache

Der Frequenzumrichter läuft für mehr als 50 s unterhalb der zulässigen Mindestfrequenz (Parameter 1-98 ATEX ETR interpol. f-Pkt.).

9.3.93 ALARM 166, ATEX ETR f-Grenze Alarm

Der Frequenzumrichter läuft für mehr als 60 s unterhalb der zulässigen Mindestfrequenz (Parameter 1-98 ATEX ETR interpol. f-Pkt.).

9.3.94 ALARM 244, Kühlkörpertemp.

Ursache

Der Kühlkörper überschreitet seine maximal zulässige Temperatur. Sie können den Temperaturfehler erst dann quittieren, wenn die Temperatur die definierte Kühlkörpertemperatur wieder unterschritten hat. Die Abschalt- und Quittiergrenzen sind je nach der Leistungsgröße des Frequenzumrichters unterschiedlich. Dieser Alarm entspricht Alarm 29, Kühlkörpertemperaturgeber.

Fehlerbehebung

Überprüfen Sie Folgendes:

- · Umgebungstemperatur zu hoch.
- · Zu lange Motorkabel.
- Falsche Abstände zur Luftzirkulation über oder unter dem Frequenzumrichter.
- · Blockierte Luftzirkulation der Einheit.
- Beschädigter Kühlkörperlüfter
- · Verschmutzter Kühlkörper.

9.3.95 WARNUNG 251, Neu. Typencode

Ursache

Die Leistungskarte oder andere Bauteile wurden ausgetauscht und der Typencode geändert.

9.3.96 ALARM 421, Temperaturfehler

Ursache

Ein durch den eingebauten Temperaturfühler verursachter Fehler wird auf der Lüfterleistungskarte erkannt.

Fehlerbehebung

- · Überprüfen Sie die Verkabelung.
- Überprüfen Sie den integrierten Temperatursensor.
- Ersetzen Sie die Lüfterleistungskarte.

9.3.97 ALARM 423, FPC-Update

Ursache

Der Alarm wird erzeugt, wenn die Lüfterleistungskarte meldet, dass sie über einen ungültigen PUD verfügt. Die Steuerkarte versucht, den PUD zu aktualisieren. Ein nachfolgender Alarm kann daraus resultieren, abhängig vom Update. Siehe *Alarm 424, FCP-Update erfolgreich* und *Alarm 425 FPC-Update Fehler*.

9.3.98 ALARM 424, FPC-Update erfolgreich

Ursache

Dieser Alarm wird erzeugt, wenn die Steuerkarte den PUD der Lüfterleistungskarte erfolgreich aktualisiert hat.

Fehlerbehebung

• Drücken Sie auf [Reset], um den Alarm zu stoppen.

9.3.99 ALARM 425, FPC-Update Fehler

Ursache

Dieser Alarm wird erzeugt, nachdem ein Fehler beim Update des PUD der Lüfterleistungskarte durch die Steuerkarte aufgetreten ist.

Fehlerbehebung

- Überprüfen Sie die Verkabelung der Lüfterleistungskarte.
- Ersetzen Sie die Lüfterleistungskarte.
- · Wenden Sie sich an den Händler.

9.3.100 ALARM 426, FPC Config (FPC-Konfig)

Ursache

Die Anzahl der gefundenen Lüfterleistungskarten stimmt nicht mit der Anzahl der konfigurierten Lüfterleistungskarten überein. Siehe *Parametergruppe 15-6* Install. Optionen* hinsichtlich der Anzahl der konfigurierten Lüfterleistungskarten.

Fehlerbehebung

- Überprüfen Sie die Verkabelung der Lüfterleistungskarte.
- Ersetzen Sie die Lüfterleistungskarte.

9.3.101 ALARM 427, FPC-Versorgung

Ursache

Ein Fehler der Versorgungsspannung (5 V, 24 V oder 48 V) an der Lüfterleistungskarte wird erkannt.

Fehlerbehebung

- Überprüfen Sie die Verkabelung der Lüfterleistungskarte.
- Ersetzen Sie die Lüfterleistungskarte.

9.4 Fehlerbehebung

Tabelle 77: Fehlerbehebung

Symptom	Mögliche Ursache	Test	Lösung
Display dunkel/ Ohne Funktion	Fehlende Eingangsleistung	Siehe <u>6.1 Checkliste vor der Inbetriebnahme</u> .	Prüfen Sie die Netzeingangsquelle.
	Fehlende oder offene Sicher- ungen.	Mögliche Ursachen finden Sie in dieser Tabelle unter <i>Offene Sicherungen</i> .	Folgen Sie den gegebenen Empfehlungen.
	Keine Stromversorgung zum LCP.	Prüfen Sie, ob das LCP-Kabel rich- tig angeschlossen oder möglicher- weise beschädigt ist.	Ersetzen Sie das defekte LCP oder Anschlusskabel.
	Kurzschluss an der Steuer- spannung (Klemme 12 oder 50) oder an den Steuerklem- men.	Überprüfen Sie die 24-V-Steuer- spannungsversorgung für Klem- men 12/13 bis 20-39 oder die 10- V-Stromversorgung für Klemmen 50-55.	Verdrahten Sie die Klemmen richtig.
	Inkompatibles LCP (LCP von VLT [*] 2800 oder 5000/6000/8000/FCD oder FCM).	-	Verwenden Sie nur LCP 101 (Teilenr. 130B1124) oder LCP 102 (Teilenr. 130B1107).
	Falsche Kontrasteinstellung	-	Drücken Sie auf [Status] + [▲]/[▼], um den Kontrast anzupassen.
	Display (LCP) ist defekt.	Führen Sie einen Test mit einem anderen LCP durch.	Ersetzen Sie das defekte LCP oder Anschlusskabel.
	Fehler der internen Span- nungsversorgung oder de- fektes Schaltnetzteil (SMPS)	-	Wenden Sie sich an den Händler.
Displayausset- zer	Überlastetes Schaltnetzteil (SMPS) durch falsche Steuer- verdrahtung oder Störung im Frequenzumrichter.	Um sicherzustellen, dass kein Problem in den Steuerleitungen vorliegt, trennen Sie alle Steuerlei- tungen durch Entfernen der Klem- menblöcke.	Leuchtet das Display weiterhin, liegt ein Problem in den Steuerleitungen vor. Überprüfen Sie die Kabel auf Kurzschlüsse oder falsche Anschlüsse. Wenn das Display weiterhin aussetzt, führen Sie das Verfahren unter Display dunkel/keine Funktion durch.

Symptom	Mögliche Ursache	Test	Lösung
Motor läuft nicht	Serviceschalter offen oder fehlender Motoranschluss		Schließen Sie den Motor an und prüfen Sie den Serviceschalter.
	Keine Netzversorgung bei 24 V DC-Optionskarte		Legen Sie Netzspannung an.
	LCP-Stopp.		Drücken Sie je nach Betriebsart [Auto On] oder [Hand On].
	Fehlendes Startsignal (Stand- by)		Legen Sie ein gültiges Startsignal an.
	Motorfreilaufsignal aktiv (Freilauf)		Legen Sie 24 V an Klemme 27 an oder programmieren Sie diese Klemme auf [0] Ohne Funktion.
	Falsche Sollwertsignalquelle	 Überprüfen Sie das Sollwertsignal: Lokal Fern- oder Bus-Sollwert? Ist der Festsollwert aktiv? Ist der Anschluss der Klemmen korrekt? Ist die Skalierung der Klemmen korrekt? Ist das Sollwertsignal verfügbar? 	Programmieren Sie die richtigen Einstellungen. Überprüfen Sie <i>Parameter 3-13 Sollwertvorgabe</i> . Setzen Sie den Festsollwert in <i>Parametergruppe 3-1* Sollwerteinstellung</i> auf aktiv. Prüfen Sie, ob Frequenzumrichter und Motor richtig verkabelt sind. Überprüfen Sie die Skalierung der Klemmen. Überprüfen Sie das Sollwertsignal:
Die Motordreh- richtung ist falsch	Motordrehgrenze.	Stellen Sie sicher, dass <i>Parameter</i> 4-10 Motor <i>Drehrichtung</i> korrekt programmiert ist.	Programmieren Sie die richtigen Einstellungen.
	Aktives Reversierungssignal	Überprüfen Sie, ob ein Reversier- ungsbefehl für die Klemme in <i>Pa-</i> <i>rametergruppe 5-1* Digitalein-</i> <i>gänge</i> programmiert ist.	Deaktivieren Sie das Reversierungssignal.
	Falscher Motorphasenans- chluss	-	Siehe <u>7.3.1 Überprüfung der Motordrehung</u> .
Motor erreicht maximale Dreh- zahl nicht	Frequenzgrenzen falsch eingestellt	Prüfen Sie die Frequenzgrenzen in Parameter 4-13 Max. Drehzahl [UPM], Parameter 4-14 Max. Fre- quenz [Hz] und Parameter 4-19 Max. Ausgangsfrequenz.	Programmieren Sie die richtigen Grenzen.
	Sollwerteingangssignal nicht richtig skaliert	Überprüfen Sie die Skalierung des Sollwerteingangssignals in Param- etergruppe 6-0* Grundeinstellungen und in Parametergruppe 3-1* Sol- lwerteinstellung.	Programmieren Sie die richtigen Einstellungen.
Motordrehzahl instabil	Möglicherweise falsche Parametereinstellungen	Überprüfen Sie die Einstellungen aller Motorparameter, darunter auch alle Schlupfausgleichsein- stellungen. Prüfen Sie bei Rege- lung mit Rückführung die PID-Ein- stellungen.	Überprüfen Sie die Einstellungen in <i>Parametergruppe 1-6* Lastabh. Einstellung.</i> Beim Betrieb mit Rückführung prüfen Sie die Einstellungen in <i>Parametergruppe 20-0* Istwert.</i>

Symptom	Mögliche Ursache	Test	Lösung
Motor läuft un- ruhig	Mögliche Übermagnetisier- ung.	Prüfen Sie alle Motorparameter auf falsche Motoreinstellungen.	Überprüfen Sie die Motoreinstellungen in den Parametergruppen 1-2* Motordaten, 1-3* Erw. Motordaten und 1-5* Lastunabh. Einstellung.
Motor bremst nicht	Möglicherweise falsche Einstellungen in den Bremsparametern. Möglicherweise sind die Rampe-ab-Zeiten zu kurz.	Prüfen Sie die Bremsparameter. Prüfen Sie die Einstellungen für die Rampenzeiten.	Überprüfen Sie die <i>Parametergruppen</i> 2-0* <i>DC Halt/DC Bremse</i> und 3-0* <i>Sollwert-grenzen</i> .
Offene Netzsi- cherungen	Phasenkurzschluss.	Kurzschluss zwischen Phasen an Motor oder Geräteeinheit. Prüfen Sie die Motor- und Geräteeinheit- phasen auf Kurzschlüsse.	Beseitigen Sie erkannte Kurzschlüsse.
	Motorüberlastung	Die Anwendung überlastet den Motor.	Führen Sie die Inbetriebnahmeprüfung durch und stellen Sie sicher, dass der Motorstrom im Rahmen der Spezifikationen liegt. Wenn der Motorstrom den Voll-Laststrom auf dem Typenschild überschreitet, kann der Motor ggf. nur mit reduzierter Last laufen. Überprüfen Sie die Spezifikationen der Anwendung.
	Lose Anschlüsse.	Führen Sie die Inbetriebnahme- prüfung nach losen Anschlüssen und Kontakten durch.	Ziehen Sie lose Anschlüsse und Kontakte fest.
Abweichung der Netzstro- masymmetrie ist größer als	Problem mit der Netzversorgung (siehe Beschreibung unter <i>Alarm 4, Netzasymmetrie</i>).	Wechseln Sie die Netzeingangskabel um eine Position: A zu B, B zu C, C zu A.	Wenn die Asymmetrie dem Kabel folgt, liegt ein Netzstromproblem vor. Prüfen Sie die Netzversorgung.
3 %	Problem mit dem Frequenzumrichter.	Wechseln Sie die Netzeingangska- bel am Frequenzumrichter um eine Position: A zu B, B zu C, C zu A.	Wenn der asymmetrische Leitungszweig in der gleichen Eingangsklemme bleibt, liegt ein Problem mit dem Frequenzum- richter vor. Wenden Sie sich an Ihren Händler.
Motorstroma- symmetrie größer 3 %	Problem mit Motor oder Motorverdrahtung	Wechseln Sie die Kabel zum Motor um 1 Position: U zu V, V zu W, W zu U.	Wenn die Asymmetrie dem Kabel folgt, liegt das Problem beim Motor oder in den Motorkabeln. Überprüfen Sie den Motor und die Motorkabel.
	Problem mit dem Frequenzumrichter.	Wechseln Sie die Kabel zum Motor um 1 Position: U zu V, V zu W, W zu U.	Wenn die Asymmetrie an der gleichen Ausgangsklemme bestehen bleibt, liegt ein Problem mit dem Frequenzumrichter vor. Wenden Sie sich an Ihren Händler.
Frequenzum- richter hat Bes- chleunigung- sprobleme	Motordaten wurden falsch eingegeben.	Wenn Warnungen oder Alarme auftreten, finden Sie hierzu Infor- mationen im Abschnitt "Warnun- gen und Alarme". Stellen Sie sich- er, dass Sie die Motordaten korrekt eingegeben haben.	Erhöhen Sie die Rampenzeit Auf in <i>Parameter 3-41 Rampe 1 Rampenzeit Auf</i> . Erhöhen Sie die Stromgrenze in <i>Parameter 4-18 Stromgrenze</i> . Erhöhen Sie die Drehmomentgrenze in <i>Parameter 4-16 Momentengrenze motorisch</i> .

Symptom	Mögliche Ursache	Test	Lösung
Frequenzum- richter hat Ver- zögerungspro- bleme	Motordaten wurden falsch eingegeben.	Wenn Warnungen oder Alarme auftreten, finden Sie hierzu Informationen im Abschnitt "Warnungen und Alarme". Stellen Sie sicher, dass Sie die Motordaten korrekt eingegeben haben.	Erhöhen Sie die Rampenzeit Ab in <i>Parameter 3-42 Rampe 1 Rampenzeit Ab</i> . Aktivieren Sie die Überspannungssteuerung in <i>Parameter 2-17 Überspannungssteuerung</i> .

10 Technische Daten

10.1 Elektrische Daten

10.1.1 Elektrische Daten, 380-480 V AC

Tabelle 78: Elektrische Daten, Netzversorgung 3x380-480 V AC

FC 202	N110		N132		N160	
Hohe/normale Überlast	НО	NO	но	NO	НО	NO
Hohe Überlast = 150 % oder 160 % Drehmoment für 60 s. Normale Überlast = 110 % Drehmoment für 60 s.						
Typische Wellenleistung bei 400 V [kW]	90	110	110	132	132	160
Typische Wellenleistung bei 460 V [HP] (nur Nordamerika)	125	150	150	200	200	250
Typische Wellenleistung bei 480 V [kW]	110	132	132	160	160	200
Baugröße	D9h		D9h		D9h	
Ausgangsstrom (3-phasig)						
Dauerbetrieb (bei 400 V) [A]	177	212	212	260	260	315
Überlast (60 s) (bei 400 V) [A]	266	233	318	286	390	347
Dauerbetrieb (bei 460/480 V) [A]	160	190	190	240	240	302
Überlast (60 s) (bei 460/480 V) [A]	240	209	285	264	360	332
Dauerleistung kVA (bei 400 V) [kVA]	123	147	147	180	180	218
Dauerleistung kVA (bei 460 V) [kVA]	127	151	151	191	191	241
Dauerleistung kVA (bei 480 V) [kVA]	139	165	165	208	208	262
Max. Eingangsstrom				,		
Dauerbetrieb (bei 400 V) [A]	171	204	204	251	251	304
Dauerbetrieb (bei 460/480 V) [A]	154	183	183	231	231	291
Maximale Anzahl Kabel und -querschnitt pro Phase				,		
- Netz [mm² (AWG)]	2x95 (2x	3/0 mcm)	2x95 (2x	3/0 mcm)	2x95 (2x	3/0 mcm)
- Netz mit Trennschalter [mm² (AWG)]	2x95 (2x	3/0 mcm)	2x95 (2x	3/0 mcm)	2x95 (2x	3/0 mcm)
- Netz mit Sicherungstrennschalter [mm² (AWG)]	2x95 (2x	3/0 mcm)	2x95 (2x	3/0 mcm)	2x95 (2x	3/0 mcm)
- Netz mit Schütz [mm² (AWG)]	2x95 (2x	3/0 mcm)	2x95 (2x	3/0 mcm)	2x95 (2x	3/0 mcm)
- Motor [mm² (AWG)]	2x95 (2x	3/0 mcm)	2x95 (2x	3/0 mcm)	2x95 (2x	3/0 mcm)
Verlustleistung des Frequenzumrichtermoduls bei 400 V [W] (1) (2) (3)	2031	2559	2289	2954	2923	3770
Verlustleistung des Frequenzumrichtermoduls bei 460 V [W] (1) (2) (3)	1828	2261	2051	2724	2089	3628
Wirkungsgrad des Frequenzumrichters (2)	0,98		0,98		0,98	
Ausgangsfrequenz [Hz] (4)	0-590		0-590		0-590	

FC 202	N110	N132	N160
Kühlkörper Übertemperatur Abschalt. [°C (°F)]	110 (230)	110 (230)	110 (230)
Steuerkarte Übertemperatur Abschalt. [°C (°F)]	75 (167)	75 (167)	75 (167)
PHF Übertemperatur Abschalt. [°C (°F)]	150 (302)	150 (302)	150 (302)
dU/dt-Filter Übertemperatur Abschalt. [°C (°F)]	150 (302)	150 (302)	150 (302)
Sinusfilter Übertemperatur Abschalt. [°C (°F)]	150 (302)	150 (302)	150 (302)

¹ Die typische Verlustleistung gilt für normale Bedingungen und sollte innerhalb von ±15 % liegen (Toleranz bezieht sich auf Schwankungen der Spannung und der Kabelbedingungen). Diese Werte basieren auf einem typischen Motorwirkungsgrad (Übergang IE2/IE3). Motoren mit niedrigerem Wirkungsgrad erhöhen die Verlustleistung im Frequenzumrichter. Gilt für die Dimensionierung der Kühlung des Frequenzumrichters. Wenn Sie die Taktfrequenz im Vergleich zur Werkseinstellung erhöhen, kann die Verlustleistung bedeutend steigen. Die Leistungsaufnahme des LCP und typischer Steuerkarten sind eingeschlossen. Verlustleistungsdaten gemäß EN 50598-2 finden Sie unter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Optionen und Anschlusslasten können die Verluste um bis zu 30 W erhöhen, auch wenn in der Regel bei einer vollständig belasteten Steuerkarte und Optionen für die Steckplätze A und B nur jeweils 4 W zusätzlich anfallen.

Tabelle 79: Elektrische Daten, Netzversorgung 3x380-480 V AC

FC 202	N200		N250		N315	
Hohe/normale Überlast Hohe Überlast = 150 % oder 160 % Drehmoment für 60 s. Normale Überlast = 110 % Drehmoment für 60 s.	но	NO	НО	NO	НО	NO
Typische Wellenleistung bei 400 V [kW]	160	200	200	250	250	315
Typische Wellenleistung bei 460 V [HP] (nur Nordamerika)	250	300	300	350	350	450
Typische Wellenleistung bei 480 V [kW]	200	250	250	315	315	355
Baugröße	D10h		D10h		D10h	
Ausgangsstrom (3-phasig)						
Dauerbetrieb (bei 400 V) [A]	315	395	395	480	480	588
Überlast (60 s) (bei 400 V) [A]	473	435	593	528	720	647
Dauerbetrieb (bei 460/480 V) [A]	302	361	361	443	443	535
Überlast (60 s) (bei 460/480 V) [A]	453	397	542	487	665	589
Dauerleistung kVA (bei 400 V) [kVA]	218	274	274	333	333	407
Dauerleistung kVA (bei 460 V) [kVA]	241	288	288	353	353	426
Dauerleistung kVA (bei 480 V) [kVA]	262	313	313	384	384	463
Max. Eingangsstrom						
Dauerbetrieb (bei 400 V) [A]	304	381	381	463	463	567
Dauerbetrieb (bei 460/480 V) [A]	291	348	348	427	427	516
Maximale Anzahl Kabel und -querschnitt pro Phase						

² Gemessen mit 5 m (16,4 ft) abgeschirmtem Motorkabel bei Nennlast und Nennfrequenz. Wirkungsgrad gemessen bei Nennstrom. Die Energieeffizienzklasse finden Sie im Abschnitt "Umgebungsbedingungen". Informationen zu Teillastverlusten finden Sie unter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.

³ Siehe auch "Verlustleistungen an Eingangsleistungsoption".

⁴ Bei der Verwendung eines Ausgangsfilters ist die Ausgangsfrequenz weiter begrenzt. Siehe Abschnitt "Motorausgang (U, V, W)".

FC 202	N200		N250		N315	
- Netz [mm² (AWG)]	2 x 185 (2 x	(350 mcm)	2 x 185 (2 x 350 mcm)		2 x 185 (2 x 350 mcm)	
- Netz mit Trennschalter [mm² (AWG)]	2 x 185 (2 x	(350 mcm)	2 x 185 (2 x	(350 mcm)	2 x 185 (2 x	(350 mcm)
- Netz mit Sicherungstrennschalter [mm² (AWG)]	2 x 185 (2 x	(350 mcm)	2 x 185 (2 x	(350 mcm)	2 x 185 (2 x	(350 mcm)
- Netz mit Schütz [mm² (AWG)]	2 x 185 (2 x	(350 mcm)	2 x 185 (2 x	(350 mcm)	2 x 185 (2 x	(350 mcm)
- Netz [mm² (AWG)]	2 x 185 (2 x	(350 mcm)	2 x 185 (2 x	2 x 185 (2 x 350 mcm)		(350 mcm)
Verlustleistung des Frequenzumrichtermoduls bei 400 V [W] (1) (2) (3)	3093	4116	4039	5137	5005	6674
Verlustleistung des Frequenzumrichtermoduls bei 460 V [W] (1) (2) (3)	2872	3569	3575	4566	4458	5714
Wirkungsgrad des Frequenzumrichters (2)	0,98	,	0,98		0,98	
Ausgangsfrequenz [Hz] (4)	0–590		0–590		0–590	
Kühlkörper Übertemperatur Abschalt. [°C (°F)]	110 (230)		110 (230)		110 (230)	
Steuerkarte Übertemperatur Abschalt. [°C (°F)]	80 (176)	76) 80 (176)			80 (176)	
PHF Übertemperatur Abschalt. [°C (°F)]	150 (302)		150 (302)		150 (302)	
dU/dt-Filter Übertemperatur Abschalt. [°C (°F)]	150 (302)		150 (302)		150 (302)	
Sinusfilter Übertemperatur Abschalt. [°C (°F)]	150 (302)		150 (302)		150 (302)	

Die typische Verlustleistung gilt für normale Bedingungen und sollte innerhalb von ±15 % liegen (Toleranz bezieht sich auf Schwankungen der Spannung und der Kabelbedingungen). Diese Werte basieren auf einem typischen Motorwirkungsgrad (Übergang IE2/IE3). Motoren mit niedrigerem Wirkungsgrad erhöhen die Verlustleistung im Frequenzumrichter. Gilt für die Dimensionierung der Kühlung des Frequenzumrichters. Wenn Sie die Taktfrequenz im Vergleich zur Werkseinstellung erhöhen, kann die Verlustleistung bedeutend steigen. Die Leistungsaufnahme des LCP und typischer Steuerkarten sind eingeschlossen. Verlustleistungsdaten gemäß EN 50598-2 finden Sie unter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Optionen und Anschlusslasten können die Verluste um bis zu 30 W erhöhen, auch wenn in der Regel bei einer vollständig belasteten Steuerkarte und Optionen für die Steckplätze A und B nur jeweils 4 W zusätzlich anfallen.

Tabelle 80: Elektrische Daten, Netzversorgung 3x380-480 V AC

FC 202	N355		N400		N450		
Hohe/normale Überlast	НО	NO	НО	NO	НО	NO	
Hohe Überlast = 150 % oder 160 % Drehmoment für 60 s. Normale Überlast = 110 % Drehmoment für 60 s.							
Typische Wellenleistung bei 400 V [kW]	315	355	355	400	400	450	
Typische Wellenleistung bei 460 V [HP] (nur Nordameri- ka)	450	500	500	600	550	600	
Typische Wellenleistung bei 480 V [kW]	355	400	400	500	500	530	
Baugröße	E5h		E5h		E5h		
Ausgangsstrom (3-phasig)							

² Gemessen mit 5 m (16,4 ft) abgeschirmtem Motorkabel bei Nennlast und Nennfrequenz. Wirkungsgrad gemessen bei Nennstrom. Die Energieeffizienzklasse finden Sie im Abschnitt "Umgebungsbedingungen". Informationen zu Teillastverlusten finden Sie unter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.

³ Siehe auch "Verlustleistungen an Eingangsleistungsoption".

⁴ Bei der Verwendung eines Ausgangsfilters ist die Ausgangsfrequenz weiter begrenzt. Siehe Abschnitt "Motorausgang (U, V, W)".

FC 202	N355		N400		N450		
Dauerbetrieb (bei 400 V) [A]	600	658	658	745	695	800	
Überlast (60 s) (bei 400 V) [A]	900	724	987	820	1043	880	
Dauerbetrieb (bei 460/480 V) [A]	540	590	590	678	678	730	
Überlast (60 s) (bei 460/480 V) [A]	810	649	885	746	1017	803	
Dauerleistung kVA (bei 400 V) [kVA]	416	456	456	516	482	554	
Dauerleistung kVA (bei 460 V) [kVA]	430	470	470	540	540	582	
Dauerleistung kVA (bei 480 V) [kVA]	468	511	511	587	587	632	
Max. Eingangsstrom		'	'				
Dauerbetrieb (bei 400 V) [A]	578	634	634	718	670	771	
Dauerbetrieb (bei 460/480 V) [A]	520	569	569	653	653	704	
Maximale Anzahl Kabel und -querschnitt pro Phase			'				
- Netz [mm² (AWG)]	4 x 120 (4 :	x 250 mcm)	4 x 120 (4 x	(250 mcm)	250 mcm) 4 x 120 (4 x 250 mcm		
- Netz mit Trennschalter [mm² (AWG)]	4 x 120 (4 :	x 250 mcm)	4 x 120 (4)	(250 mcm)	4 x 120 (4 x 250 mcm)		
- Netz mit Sicherungstrennschalter [mm² (AWG)]	4 x 120 (4 :	x 250 mcm)	4 x 120 (4 x	(250 mcm)	4 x 120 (4 x	4 x 120 (4 x 250 mcm)	
- Netz mit Schütz [mm² (AWG)]	4 x 120 (4 :	x 250 mcm)	4 x 120 (4 x	(250 mcm)	4 x 120 (4 x 250 mcm)		
- Motor [mm² (AWG)]	4 x 120 (4 :	x 250 mcm)	4 x 120 (4 x	(250 mcm)	4 x 120 (4 x 250 mcm)		
Verlustleistung des Frequenzumrichtermoduls bei 400 V $[W]^{(1)(2)(3)}$	6178	6928	6851	8036	7297	8783	
Verlustleistung des Frequenzumrichtermoduls bei 460 V $[W]^{(1)(2)(3)}$	5322	5910	5846	6933	7240	7969	
Wirkungsgrad des Frequenzumrichters (2)	0,98		0,98		0,98		
Ausgangsfrequenz [Hz] (4)	0-590		0–590 0–590		0-590		
Kühlkörper Übertemperatur Abschalt. [°C (°F)]	110 (230)		110 (230)		110 (230)		
Steuerkarte Übertemperatur Abschalt. [°C (°F)]	80 (176)		80 (176)		80 (176)		
PHF Übertemperatur Abschalt. [°C (°F)]	150 (302)		150 (302)		150 (302)		
dU/dt-Filter Übertemperatur Abschalt. [°C (°F)]	150 (302)		150 (302)		150 (302)		
Sinusfilter Übertemperatur Abschalt. [°C (°F)]	150 (302)		150 (302)		150 (302)		

¹ Die typische Verlustleistung gilt für normale Bedingungen und sollte innerhalb von ±15 % liegen (Toleranz bezieht sich auf Schwankungen der Spannung und der Kabelbedingungen). Diese Werte basieren auf einem typischen Motorwirkungsgrad (Übergang IE2/IE3). Motoren mit niedrigerem Wirkungsgrad erhöhen die Verlustleistung im Frequenzumrichter. Gilt für die Dimensionierung der Kühlung des Frequenzumrichters. Wenn Sie die Taktfrequenz im Vergleich zur Werkseinstellung erhöhen, kann die Verlustleistung bedeutend steigen. Die Leistungsaufnahme des LCP und typischer Steuerkarten sind eingeschlossen. Verlustleistungsdaten gemäß EN 50598-2 finden Sie unter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Optionen und Anschlusslasten können die Verluste um bis zu 30 W erhöhen, auch wenn in der Regel bei einer vollständig belasteten Steuerkarte und Optionen für die Steckplätze A und B nur jeweils 4 W zusätzlich anfallen.

² Gemessen mit 5 m (16,4 ft) abgeschirmtem Motorkabel bei Nennlast und Nennfrequenz. Wirkungsgrad gemessen bei Nennstrom. Die Energieeffizienzklasse finden Sie im Abschnitt "Umgebungsbedingungen". Informationen zu Teillastverlusten finden Sie unter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.

³ Siehe auch "Verlustleistungen an Eingangsleistungsoption".

⁴ Bei der Verwendung eines Ausgangsfilters ist die Ausgangsfrequenz weiter begrenzt. Siehe Abschnitt "Motorausgang (U, V, W)".

Tabelle 81: Elektrische Daten, Netzversorgung 3x380-480 V AC

FC 202	N500		N560		
Hohe/normale Überlast	НО	NO	НО	NO	
Hohe Überlast = 150 % oder 160 % Drehmoment für 60 s. Normale Überlast = 110 % Drehmoment für 60 s.					
Typische Wellenleistung bei 400 V [kW]	450	500	500	560	
Typische Wellenleistung bei 460 V [HP] (nur Nordamerika)	600	650	650	750	
Typische Wellenleistung bei 480 V [kW]	530	560	560	630	
Baugröße	E6h		E6h		
Ausgangsstrom (3-phasig)					
Dauerbetrieb (bei 400 V) [A]	800	880	880	990	
Überlast (60 s) (bei 400 V) [A]	1200	968	1320	1089	
Dauerbetrieb (bei 460/480 V) [A]	730	780	780	890	
Überlast (60 s) (bei 460/480 V) [A]	1095	858	1170	979	
Dauerleistung kVA (bei 400 V) [kVA]	554	610	610	686	
Dauerleistung kVA (bei 460 V) [kVA]	582	621	621	709	
Dauerleistung kVA (bei 480 V) [kVA]	632	675	675	771	
Max. Eingangsstrom					
Dauerbetrieb (bei 400 V) [A]	771	848	848	954	
Dauerbetrieb (bei 460/480 V) [A]	704	752	752	858	
Maximale Anzahl Kabel und -querschnitt pro Phase					
- Netz [mm² (AWG)]	4 x 185 (4 x	x 350 mcm)	4 x 185 (4 x 350 mcm)		
- Netz mit Trennschalter [mm² (AWG)]	4 x 185 (4 x	x 350 mcm)	4 x 185 (4 x 350 mcm)		
- Netz mit Sicherungstrennschalter [mm² (AWG)]	4 x 185 (4)	(350 mcm)	4 x 185 (4	x 185 (4 x 350 mcm)	
- Netz mit Schütz [mm² (AWG)]	4 x 185 (4)	(350 mcm)	4 x 185 (4 x 350 mcm)		
- Motor [mm² (AWG)]	4 x 185 (4)	(350 mcm)	4 x 185 (4	x 350 mcm)	
Verlustleistung des Frequenzumrichtermoduls bei 400 V [W] (1) (2) (3)	8352	9473	9449	11102	
Geschätzte Verlustleistung bei 460 V [W] (1) (2) (3)	7182	7809	7771	9236	
Wirkungsgrad des Frequenzumrichters (2)	0,98		0,98		
Ausgangsfrequenz [Hz] (4)	0-590		0-590		
Kühlkörper Übertemperatur Abschalt. [°C (°F)] 110 (230) 100 (212)					
Steuerkarte Übertemperatur Abschalt. [°C (°F)] 80 (176) 80 (176)					
PHF Übertemperatur Abschalt. [°C (°F)] 150 (302) 150 (302)			150 (302)		
dU/dt-Filter Übertemperatur Abschalt. [°C (°F)]				150 (302)	
Sinusfilter Übertemperatur Abschalt. [°C (°F)]	150 (302)		150 (302)		

168 | Danfoss A/S © 2018.10

10.1.2 Elektrische Daten, 525-690 V AC

Tabelle 82: Elektrische Daten, Netzversorgung 3x525-690 V AC

FC 202	N110		N132		N160		N200	
Hohe/normale Überlast	НО	NO	но	NO	НО	NO	но	NO
Hohe Überlast = 150 % oder 160 % Drehmoment für 60 s. Normale Überlast = 110 % Drehmoment für 60 s.								
Typische Wellenleistung bei 550 V [kW]	75	90	90	110	110	132	132	160
Typische Wellenleistung bei 575 V [HP]	100	125	125	150	150	200	200	250
Typische Wellenleistung bei 690 V [kW]	90	110	110	132	132	160	160	200
Baugröße	D9h		D9h		D9h		D10h	
Ausgangsstrom (3-phasig)			,					
Dauerbetrieb (bei 550 V) [A]	113	137	137	162	162	201	201	253
Überlast (60 s) (bei 550 V) [A]	170	151	206	178	243	221	301	278
Dauerbetrieb (bei 575/690 V) [A]	108	131	131	155	155	192	192	242
Überlast (60 s) (bei 575/690 V) [A]	162	144	197	171	233	211	288	266
Dauerleistung kVA (bei 550 V) [kVA]	103	125	125	147	147	183	183	230
Dauerbetrieb kVA (bei 575 V) [kVA]	108	131	131	154	154	191	191	241
Dauerbetrieb kVA (bei 690 V) [kVA]	129	157	157	185	185	230	229	289
Max. Eingangsstrom								
Dauerbetrieb (bei 525 V) [A]	109	132	132	156	156	193	193	244
Dauerbetrieb (bei 575/690 V) [A]	104	126	126	149	149	185	185	233
Maximale Anzahl Kabel und -querschnitt pr	o Phase							
- Netz [mm² (AWG)]	2x95 (2x	3/0 mcm)	2x95 (2x	3/0 mcm)	2x95 (2x	3/0 mcm)	2 x 185 (2 x	(350 mcm)
- Netz mit Trennschalter [mm² (AWG)]	2x95 (2x	3/0 mcm)	2x95 (2x	3/0 mcm)	2x95 (2x	3/0 mcm)	2 x 185 (2 x	(350 mcm)
- Netz mit Sicherungstrennschalter [mm² (AWG)]	2x95 (2x	3/0 mcm)	2x95 (2x	3/0 mcm)	2x95 (2x	3/0 mcm)	2 x 185 (2 >	(350 mcm)

¹ Die typische Verlustleistung gilt für normale Bedingungen und sollte innerhalb von ±15 % liegen (Toleranz bezieht sich auf Schwankungen der Spannung und der Kabelbedingungen). Diese Werte basieren auf einem typischen Motorwirkungsgrad (Übergang IE2/IE3). Motoren mit niedrigerem Wirkungsgrad erhöhen die Verlustleistung im Frequenzumrichter. Gilt für die Dimensionierung der Kühlung des Frequenzumrichters. Wenn Sie die Taktfrequenz im Vergleich zur Werkseinstellung erhöhen, kann die Verlustleistung bedeutend steigen. Die Leistungsaufnahme des LCP und typischer Steuerkarten sind eingeschlossen. Verlustleistungsdaten gemäß EN 50598-2 finden Sie unter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Optionen und Anschlusslasten können die Verluste um bis zu 30 W erhöhen, auch wenn in der Regel bei einer vollständig belasteten Steuerkarte und Optionen für die Steckplätze A und B nur jeweils 4 W zusätzlich anfallen.

² Gemessen mit 5 m (16,4 ft) abgeschirmtem Motorkabel bei Nennlast und Nennfrequenz. Wirkungsgrad gemessen bei Nennstrom. Die Energieeffizienzklasse finden Sie im Abschnitt "Umgebungsbedingungen". Informationen zu Teillastverlusten finden Sie unter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.

³ Siehe auch "Verlustleistungen an Eingangsleistungsoption".

⁴ Bei der Verwendung eines Ausgangsfilters ist die Ausgangsfrequenz weiter begrenzt. Siehe Abschnitt "Motorausgang (U, V, W)".

FC 202	N110		N132		N160		N200	
- Netz mit Schütz [mm² (AWG)]	2x95 (2x3	3/0 mcm)	2x95 (2x3/0 mcm)		2x95 (2x3/0 mcm)		2 x 185 (2 x 350 mcm)	
- Motor [mm² (AWG)]	2x95 (2x3	3/0 mcm)	2x95 (2x	3/0 mcm)	2x95 (2x	3/0 mcm)	2 x 185 (2 x 350 mcm)	
Verlustleistung des Frequenzumrichtermoduls bei 600 V [W] (1) (2) (3)	1430	1740	1742	2101	2080	2649	2361	3074
Verlustleistung des Frequenzumrichtermoduls bei 690 V [W] (1) (2) (3)	1480	1798	1800	2167	2159	2740	2446	3175
Wirkungsgrad des Frequenzumrichters (2)	0,98		0,98		0,98	:	0,98	
Ausgangsfrequenz [Hz] (4)	0-590		0–590		0-590		0–590	
Kühlkörper Übertemperatur Abschalt. [°C (°F)]	110 (230)		230) 110 (230)		110 (230)		110 (230)	
Steuerkarte Übertemperatur Abschalt. [°C (°F)]	80 (176)	80 (176)		80 (176)		80 (176)		
PHF Übertemperatur Abschalt. [°C (°F)]	150 (302))	150 (302)	150 (302)	150 (302)	
dU/dt-Filter Übertemperatur Abschalt. [°C (°F)]	150 (302))	150 (302)	150 (302)	150 (302)	
Sinusfilter Übertemperatur Abschalt. [°C (°F)]	150 (302))	150 (302)	150 (302)	150 (302)	

¹ Die typische Verlustleistung gilt für normale Bedingungen und sollte innerhalb von ±15 % liegen (Toleranz bezieht sich auf Schwankungen der Spannung und der Kabelbedingungen). Diese Werte basieren auf einem typischen Motorwirkungsgrad (Übergang IE2/IE3). Motoren mit niedrigerem Wirkungsgrad erhöhen die Verlustleistung im Frequenzumrichter. Gilt für die Dimensionierung der Kühlung des Frequenzumrichters. Wenn Sie die Taktfrequenz im Vergleich zur Werkseinstellung erhöhen, kann die Verlustleistung bedeutend steigen. Die Leistungsaufnahme des LCP und typischer Steuerkarten sind eingeschlossen. Verlustleistungsdaten gemäß EN 50598-2 finden Sie unter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Optionen und Anschlusslasten können die Verluste um bis zu 30 W erhöhen, auch wenn in der Regel bei einer vollständig belasteten Steuerkarte und Optionen für die Steckplätze A und B nur jeweils 4 W zusätzlich anfallen.

Tabelle 83: Elektrische Daten, Netzversorgung 3x525-690 V AC

FC 202	N250		N315		N400	
Hohe/normale Überlast	НО	NO	НО	NO	НО	NO
Hohe Überlast = 150 % oder 160 % Drehmoment für 60 s. Normale Überlast = 110 % Drehmoment für 60 s.						
Typische Wellenleistung bei 550 V [kW]	160	200	200	250	250	315
Typische Wellenleistung bei 575 V [HP]	250	300	300	350	350	400
Typische Wellenleistung bei 690 V [kW]	200	250	250	315	315	400
Baugröße	D10h		D10h		D10h	
Ausgangsstrom (3-phasig)						
Dauerbetrieb (bei 550 V) [A]	395	303	303	360	360	418
Überlast (60 s) (bei 550 V) [A]	380	333	455	396	540	460

² Gemessen mit 5 m (16,4 ft) abgeschirmtem Motorkabel bei Nennlast und Nennfrequenz. Wirkungsgrad gemessen bei Nennstrom. Die Energieeffizienzklasse finden Sie im Abschnitt "Umgebungsbedingungen". Informationen zu Teillastverlusten finden Sie unter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.

³ Siehe auch "Verlustleistungen an Eingangsleistungsoption".

⁴ Bei der Verwendung eines Ausgangsfilters ist die Ausgangsfrequenz weiter begrenzt. Siehe Abschnitt "Motorausgang (U, V, W)".

FC 202	N250		N315		N400	
Dauerbetrieb (bei 575/690 V) [A]	242	290	290	344	344	400
Überlast (60 s) (bei 575/690 V) [A]	363	319	435	378	516	440
Dauerleistung kVA (bei 550 V) [kVA]	230	276	276	327	327	380
Dauerbetrieb kVA (bei 575 V) [kVA]	241	289	289	343	343	398
Dauerbetrieb kVA (bei 690 V) [kVA]	289	347	347	411	411	478
Max. Eingangsstrom						
Dauerbetrieb (bei 525 V) [A]	381	453	413	504	504	574
Dauerbetrieb (bei 575/690 V) [A]	366	434	395	482	482	549
Maximale Anzahl Kabel und -querschnitt pro Phase						
- Netz [mm² (AWG)]	2 x 185 (2 x 350 mcm)		2 x 185 (2 x 350 mcm)		2 x 185 (2 x 350 mcm)	
- Netz mit Trennschalter [mm² (AWG)]	2 x 185 (2 x 350 mcm)		2 x 185 (2 x 350 mcm)		2 x 185 (2 x 350 mcm)	
- Netz mit Sicherungstrennschalter [mm² (AWG)]	2 x 185 (2 x	x 350 mcm)	2 x 185 (2 x 350 mcm)		2 x 185 (2 x 350 mcm)	
- Netz mit Schütz [mm² (AWG)]	2 x 185 (2 x	x 350 mcm)	2 x 185 (2 x 350 mcm)		2 x 185 (2 x 350 mcm)	
- Motor [mm² (AWG)]	2 x 185 (2 x	x 350 mcm)	2 x 185 (2 x 350 mcm)		2 x 185 (2 x 350 mcm)	
Verlustleistung des Frequenzumrichtermoduls bei 600 V $\left[W\right]^{(1)(2)(3)}$	3012	3723	3642	4465	4146	5028
Verlustleistung des Frequenzumrichtermoduls bei 690 V $[W]^{(1)(2)(3)}$	3123	3851	3771	4614	4258	5155
Wirkungsgrad des Frequenzumrichters (2)	0,98		0,98		0,98	
Ausgangsfrequenz [Hz] (4)	0–590		0–590		0–590	
Kühlkörper Übertemperatur Abschalt. [°C (°F)]	110 (230)		110 (230)		110 (230)	
Steuerkarte Übertemperatur Abschalt. [°C (°F)]	80 (176)		80 (176)		80 (176)	
PHF Übertemperatur Abschalt. [°C (°F)]	150 (302)		150 (302)		150 (302)	
dU/dt-Filter Übertemperatur Abschalt. [°C (°F)]	150 (302)		150 (302)		150 (302)	
Sinusfilter Übertemperatur Abschalt. [°C (°F)]	150 (302)	150 (302) 150 (302)		150 (302)		

¹ Die typische Verlustleistung gilt für normale Bedingungen und sollte innerhalb von ±15 % liegen (Toleranz bezieht sich auf Schwankungen der Spannung und der Kabelbedingungen). Diese Werte basieren auf einem typischen Motorwirkungsgrad (Übergang IE2/IE3). Motoren mit niedrigerem Wirkungsgrad erhöhen die Verlustleistung im Frequenzumrichter. Gilt für die Dimensionierung der Kühlung des Frequenzumrichters. Wenn Sie die Taktfrequenz im Vergleich zur Werkseinstellung erhöhen, kann die Verlustleistung bedeutend steigen. Die Leistungsaufnahme des LCP und typischer Steuerkarten sind eingeschlossen. Verlustleistungsdaten gemäß EN 50598-2 finden Sie unter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Optionen und Anschlusslasten können die Verluste um bis zu 30 W erhöhen, auch wenn in der Regel bei einer vollständig belasteten Steuerkarte und Optionen für die Steckplätze A und B nur jeweils 4 W zusätzlich anfallen.

² Gemessen mit 5 m (16,4 ft) abgeschirmtem Motorkabel bei Nennlast und Nennfrequenz. Wirkungsgrad gemessen bei Nennstrom. Die Energieeffizienzklasse finden Sie im Abschnitt "Umgebungsbedingungen". Informationen zu Teillastverlusten finden Sie unter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.

 $^{^{\}rm 3}$ Siehe auch "Verlustleistungen an Eingangsleistungsoption".

⁴ Bei der Verwendung eines Ausgangsfilters ist die Ausgangsfrequenz weiter begrenzt. Siehe Abschnitt "Motorausgang (U, V, W)".

Tabelle 84: Elektrische Daten, Netzversorgung 3x525-690 V AC

FC 202	N450		N500		N560	
Hohe/normale Überlast	НО	NO	НО	NO	НО	NO
Hohe Überlast = 150 % oder 160 % Drehmoment für 60 s. Normale Überlast = 110 % Drehmoment für 60 s.						
Typische Wellenleistung bei 550 V [kW]	315	355	315	400	400	450
Typische Wellenleistung bei 575 V [HP]	400	450	400	500	500	600
Typische Wellenleistung bei 690 V [kW]	355	450	400	500	500	560
Baugröße	E5h		E5h		E5h	
Ausgangsstrom (3-phasig)						
Dauerbetrieb (bei 550 V) [A]	395	470	429	523	523	596
Überlast (60 s) (bei 550 V) [A]	593	517	644	575	785	656
Dauerbetrieb (bei 575/690 V) [A]	380	450	410	500	500	570
Überlast (60 s) (bei 575/690 V) [A]	570	495	615	550	750	627
Dauerleistung kVA (bei 550 V) [kVA]	376	448	409	498	498	568
Dauerbetrieb kVA (bei 575 V) [kVA]	378	448	408	498	498	568
Dauerbetrieb kVA (bei 690 V) [kVA]	454	538	490	598	598	681
Max. Eingangsstrom						
Dauerbetrieb (bei 525 V) [A]	381	453	413	504	504	574
Dauerbetrieb (bei 575/690 V) [A]	366	434	395	482	482	549
Maximale Anzahl Kabel und -querschnitt pro Phase						
- Netz [mm² (AWG)]	4 x 120 (4 x	(250 mcm)	4 x 120 (4 x 250 mcm)		4 x 120 (4 x	(250 mcm)
- Netz mit Trennschalter [mm² (AWG)]	4x120 (4x2	:50)	4x120 (4x250)		4x120 (4x250)	
- Netz mit Sicherungstrennschalter [mm² (AWG)]	4x120 (4x2	:50)	4x120 (4x250)		4x120 (4x250)	
- Netz mit Schütz [mm² (AWG)]	4x120 (4x2	:50)	4x120 (4x250)		4x120 (4x250)	
- Motor [mm² (AWG)]	4x120 (4x2	150)	4x120 (4x2	50)	4x120 (4x2	50)
Verlustleistung des Frequenzumrichtermoduls bei 600 V $[W]^{(1)(2)(3)}$	4989	6062	5419	6879	6833	8076
Verlustleistung des Frequenzumrichtermoduls bei 690 V $[W]^{(1)(2)(3)}$	4920	5939	5332	6715	6678	7852
Wirkungsgrad des Frequenzumrichters (2)	0,98		0,98		0,98	
Ausgangsfrequenz [Hz] (4)	0–590		0-590		0–590	
Kühlkörper Übertemperatur Abschalt. [°C (°F)]	110 (230)		110 (230)		110 (230)	
Steuerkarte Übertemperatur Abschalt. [°C (°F)]	80 (176)		80 (176)		80 (176)	
PHF Übertemperatur Abschalt. [°C (°F)]	150 (302)		150 (302)		150 (302)	
dU/dt-Filter Übertemperatur Abschalt. [°C (°F)]	150 (302)		150 (302)		150 (302)	

FC 202	N450	N500	N560
Sinusfilter Übertemperatur Abschalt. [°C (°F)]	150 (302)	150 (302)	150 (302)

Die typische Verlustleistung gilt für normale Bedingungen und sollte innerhalb von ±15 % liegen (Toleranz bezieht sich auf Schwankungen der Spannung und der Kabelbedingungen). Diese Werte basieren auf einem typischen Motorwirkungsgrad (Übergang IE2/IE3). Motoren mit niedrigerem Wirkungsgrad erhöhen die Verlustleistung im Frequenzumrichter. Gilt für die Dimensionierung der Kühlung des Frequenzumrichters. Wenn Sie die Taktfrequenz im Vergleich zur Werkseinstellung erhöhen, kann die Verlustleistung bedeutend steigen. Die Leistungsaufnahme des LCP und typischer Steuerkarten sind eingeschlossen. Verlustleistungsdaten gemäß EN 50598-2 finden Sie unter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Optionen und Anschlusslasten können die Verluste um bis zu 30 W erhöhen, auch wenn in der Regel bei einer vollständig belasteten Steuerkarte und Optionen für die Steckplätze A und B nur jeweils 4 W zusätzlich anfallen.

Tabelle 85: Elektrische Daten, Netzversorgung 3x525-690 V AC

FC 202	N630		N710		N800	
Hohe/normale Überlast	НО	NO	НО	NO	НО	NO
Hohe Überlast = 150 % oder 160 % Drehmoment für 60 s. Normale Überlast = 110 % Drehmoment für 60 s.						
Typische Wellenleistung bei 550 V [kW]	450	500	500	560	560	670
Typische Wellenleistung bei 575 V [HP]	600	650	650	750	750	950
Typische Wellenleistung bei 690 V [kW]	560	630	630	710	710	800
Baugröße	E5h		E6h		E6h	
Ausgangsstrom (3-phasig)	,					
Dauerbetrieb (bei 550 V) [A]	596	630	659	763	763	889
Überlast (60 s) (bei 550 V) [A]	894	693	989	839	1145	978
Dauerbetrieb (bei 575/690 V) [A]	570	630	630	730	730	850
Überlast (60 s) (bei 575/690 V) [A]	855	693	945	803	1095	935
Dauerleistung kVA (bei 550 V) [kVA]	568	600	628	727	727	847
Dauerbetrieb kVA (bei 575 V) [kVA]	568	627	627	727	727	847
Dauerbetrieb kVA (bei 690 V) [kVA]	681	753	753	872	872	1016
Max. Eingangsstrom						
Dauerbetrieb (bei 550 V) [A]	574	607	635	735	735	857
Dauerbetrieb (bei 575/690 V) [A]	549	607	607	704	704	819
Maximale Anzahl Kabel und -querschnitt pro Phase						
- Netz [mm² (AWG)]	4 x 120 (4 x 250 mcm)		4 x 185 (4 x 350 mcm)		4 x 185 (4 x	(350 mcm)
- Netz mit Trennschalter [mm² (AWG)]	4x120 (4x2	50)	4 x 185 (4 x 350 mcm)		4 x 185 (4 x 350 mcm)	
- Netz mit Sicherungstrennschalter [mm² (AWG)]	4x120 (4x2	50)	4 x 185 (4 x 350 mcm)		4 x 185 (4 x 350 mcm)	
- Netz mit Schütz [mm² (AWG)]	4x120 (4x250)		4 x 185 (4 x 350 mcm)		4 x 185 (4 x 350 mcm)	

² Gemessen mit 5 m (16,4 ft) abgeschirmtem Motorkabel bei Nennlast und Nennfrequenz. Wirkungsgrad gemessen bei Nennstrom. Die Energieeffizienzklasse finden Sie im Abschnitt "Umgebungsbedingungen". Informationen zu Teillastverlusten finden Sie unter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.

³ Siehe auch "Verlustleistungen an Eingangsleistungsoption".

⁴ Bei der Verwendung eines Ausgangsfilters ist die Ausgangsfrequenz weiter begrenzt. Siehe Abschnitt "Motorausgang (U, V, W)".

FC 202	N630		N710		N800	
- Motor [mm² (AWG)]	4x120 (4x2	:50)	4 x 185 (4 x 350 mcm)		4 x 185 (4 x 350 mcm)	
Verlustleistung des Frequenzumrichtermoduls bei 600 V [W] (1) (2) (3)	8069	9208	8543	10346	10319	12723
Verlustleistung des Frequenzumrichtermoduls bei 690 V [W] (1) (2) (3)	7848	8921	8363	10066	10060	12321
Wirkungsgrad des Frequenzumrichters (2)	0,98		0,98		0,98	
Ausgangsfrequenz [Hz] (4)	0-590		0–590		0–590	
Kühlkörper Übertemperatur Abschalt. [°C (°F)]	110 (230)		110 (230)		110 (230)	
Steuerkarte Übertemperatur Abschalt. [°C (°F)]	80 (176)		80 (176)		80 (176)	
PHF Übertemperatur Abschalt. [°C (°F)]	150 (302)		150 (302) 150 (302)		150 (302)	
dU/dt-Filter Übertemperatur Abschalt. [°C (°F)]	150 (302)		150 (302) 150 (302)		150 (302)	
Sinusfilter Übertemperatur Abschalt. [°C (°F)]	150 (302) 150 (302)		150 (302)			

¹ Die typische Verlustleistung gilt für normale Bedingungen und sollte innerhalb von ±15 % liegen (Toleranz bezieht sich auf Schwankungen der Spannung und der Kabelbedingungen). Diese Werte basieren auf einem typischen Motorwirkungsgrad (Übergang IE2/IE3). Motoren mit niedrigerem Wirkungsgrad erhöhen die Verlustleistung im Frequenzumrichter. Gilt für die Dimensionierung der Kühlung des Frequenzumrichters. Wenn Sie die Taktfrequenz im Vergleich zur Werkseinstellung erhöhen, kann die Verlustleistung bedeutend steigen. Die Leistungsaufnahme des LCP und typischer Steuerkarten sind eingeschlossen. Verlustleistungsdaten gemäß EN 50598-2 finden Sie unter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/. Optionen und Anschlusslasten können die Verluste um bis zu 30 W erhöhen, auch wenn in der Regel bei einer vollständig belasteten Steuerkarte und Optionen für die Steckplätze A und B nur jeweils 4 W zusätzlich anfallen.

10.2 Netzversorgung

Das Gerät ist für einen Kurzschluss-Nennstrom (SCCR) von maximal 100 kA bei 480/600 V geeignet.

Versorgungsklemmen	L1, L2, L3
Versorgungsspannung (1)	$380-480/500 \text{ V} \pm 10 \%$, $525-690 \text{ V} \pm 10 \%$
Netzfrequenz	50/60 Hz ±5 %
Maximale kurzzeitige Asymmetrie zwischen Netzphasen	3,0 % der Versorgungsnennspannung (2)
Wirkleistungsfaktor (λ)	≥0,9 bei Nennlast
Verschiebungs-Leistungsfaktor (cos Φ)	Nahe 1 (>0,98)
Schalten am Netzeingang L1, L2, L3 (Anzahl der Einschaltungen)	max. 1 Mal/2 Minuten
Umgebung nach EN 60664-1	Überspannungskategorie III/Verschmutzungsgrad 2

¹ Niedrige Netzspannung/Netzausfall: Bei einer niedrigen Netzspannung oder einem Netzausfall arbeitet der Frequenzumrichter weiter, bis die Zwischenkreisspannung unter den minimalen Stopppegel abfällt, der normalerweise 15 % unter der niedrigsten Versorgungsnennspannung des Frequenzumrichters liegt. Bei einer Netzspannung von weniger als 10 % unterhalb der niedrigsten Versorgungsnennspannung des Frequenzumrichters erfolgt keine Netz-Einschaltung und es wird kein volles Drehmoment erreicht.

174 | Danfoss A/S © 2018.10

² Gemessen mit 5 m (16,4 ft) abgeschirmtem Motorkabel bei Nennlast und Nennfrequenz. Wirkungsgrad gemessen bei Nennstrom. Die Energieeffizienzklasse finden Sie im Abschnitt "Umgebungsbedingungen". Informationen zu Teillastverlusten finden Sie unter drives.danfoss.com/knowledge-center/energy-efficiency-directive/#/.

³ Siehe auch "Verlustleistungen an Eingangsleistungsoption".

⁴ Bei der Verwendung eines Ausgangsfilters ist die Ausgangsfrequenz weiter begrenzt. Siehe Abschnitt "Motorausgang (U, V, W)".

² Die Berechnungen basieren auf UL/IEC61800-3.

10.3 Motorausgang und Motordaten

10.3.1 Motorausgang (U, V, W)

Motorausgang (U, V, W)

Ausgangsspannung	0-100 % der Versorgungsspannung
Ausgangsfrequenz (ohne Sinusfilter)	0–590 Hz ⁽¹⁾
Ausgangsfrequenz (mit Sinusfilter und ohne Leistungsreduzierung)	0–60 Hz ohne Leistungsreduzierung
Ausgangsfrequenz (mit Sinusfilter und Leistungsreduzierung)	0–100 Hz
Ausgangsfrequenz bei Fluxvektorbetrieb	0-300 Hz
Schalten am Ausgang	Unbegrenzt
Rampenzeiten	0,01–3600 s

¹ Spannungs- und leistungsabhängig.

10.3.2 Drehmomentkennlinien

Drehmomentkennlinie

Startmoment (konstantes Drehmoment)	Maximal 160 % für 60 s einmal in 10 Minuten (1)
Start-/Überlastmoment (variables Drehmoment)	Maximal 110 % für 0,5 s einmal in 10 Minuten ⁽¹⁾
Drehmomentanstiegzeit in FLUX (für 5 kHz f _{sw})	1 ms
Drehmomentanstiegzeit in VVC+ (unabhängig von f _{sw})	10 ms

¹ Prozentwert ist nennmomentabhängig.

10.4 Umgebungsbedingungen

Umgebung

Gehäuse	IP21/NEMA 1, IP54/NEMA 12
Vibrationstest	1,0 g
Maximale THDv	10%
Maximale relative Feuchtigkeit	5–93 (IEC 721-3-3); Klasse 3K3 (nicht kondensierend)) bei Betrieb
Aggressive Umgebungsbedingungen (IEC 60068-2-43) $\rm H_2S$ -Test	Klasse kD
Umgebungstemperatur	Maximal 50 °C (122 °F) (24-Stunden-Mittelwert maximal 45 °C (113 °F)) $^{(1)}$
Min. Umgebungstemperatur bei Volllast	0 °C (32 °F) ⁽¹⁾
Minimale Umgebungstemperatur bei reduzierter Drehzahlleistung	-10 °C (14 °F) ⁽¹⁾
Temperatur bei Lagerung/Transport	-25 bis +65/70 °C (-13 bis +149/158 °F)
Max. Höhe über dem Meeresspiegel ohne Leistungsreduzierung	1000 m (3280 ft)
EMV-Normen, Störaussendung	EN 61800-3
EMV-Normen, Störfestigkeit	EN 61800-3
Energieeffizienzklasse (2)	IE2

- Nennlast
- 90 % der Nennfrequenz
- · Taktfrequenz-Werkseinstellung.
- Schaltmodus-Werkseinstellung

10.5 Steuerleitungen

Längen und Querschnitte von Steuerleitungen

Maximale Motorkabellänge, mit Abschirmung	150 m (492 ft)
Maximale Motorkabellänge, ohne Abschirmung	300 m (984 ft)
Maximaler Querschnitt zu Steuerklemmen, flexibler/starrer Draht ohne Aderendhülsen	1,5 mm ² /16 AWG
Maximaler Querschnitt für Steuerklemmen, flexibles Kabel mit Aderendhülsen	1 mm ² /18 AWG
Maximaler Querschnitt für Steuerklemmen, flexibles Kabel mit Aderendhülsen mit Bund	0,5 mm ² /20 AWG
Mindestquerschnitt für Steuerklemmen	0,25 mm ² /24 AWG

Informationen zu Leistungskabeln siehe 10.1.1 Elektrische Daten, 380-480 V AC bis 10.1.2 Elektrische Daten, 525-690 V AC.

10.6 Steuereingang/-ausgang und Steuerdaten

10.6.1 Steuerkarte, USB serielle Schnittstelle

USB-Standard	1,1 (Full Speed)
USB-Buchse ⁽¹⁾	USB-Buchse Typ B

¹ Der Anschluss an den PC erfolgt über ein standardmäßiges USB-Kabel.

Die USB-Verbindung ist galvanisch von der Versorgungsspannung (PELV, Schutzkleinspannung) und anderen Hochspannungsklemmen getrennt; der USB-Erdanschluss ist jedoch nicht galvanisch von der Schutzerde getrennt. Benutzen Sie nur einen isolierten Laptop als PC-Verbindung zum USB-Anschluss am Frequenzumrichter.

10.6.2 STO-Klemme XD2.19 (Klemme XD2.19 hat festgelegte PNP-Logik)

STO-Klemme XD2.19 ⁽¹⁾ (2)	
Spannungsniveau	0–24 V DC
Spannungsniveau, logisch 0 PNP	< 4 V DC
Spannungsniveau, logisch 1 PNP	> 20 V DC
Maximale Spannung am Eingang	28 V DC
Typischer Eingangsstrom bei 24 V	50 mA eff.
Typischer Eingangsstrom bei 20 V	60 mA eff.
Eingangskapazität	400 nF

¹ Weitere Informationen über die Klemme XD2.19 (Klemme 37 am Antriebsmodul) und Safe Torque Off finden Sie im Projektierungshandbuch.

¹ Weitere Informationen finden Sie im produktspezifischen Projektierungshandbuch.

² Bestimmt gemäß EN 50598-2 bei:

Alle Digitaleingänge sind von der Versorgungsspannung (PELV) und anderen Hochspannungsklemmen galvanisch getrennt.

10.6.3 Steuerkarte, 24-V-DC-Ausgang

Klemme Nr.	XD2.10, XD2.11
Ausgangsspannung	24 V +1, -3 V
Maximale Last	200 mA

Die 24-V-DC-Versorgung ist galvanisch von der Versorgungsspannung (PELV) getrennt, hat jedoch das gleiche Potenzial wie die analogen und digitalen Ein- und Ausgänge.

10.6.4 Steuerkarte, +10 V DC Ausgang

Klemme Nr.	XD2.6
Ausgangsspannung	10,5 V ±0,5 V
Maximale Last	15 mA

Die 10-V-DC-Versorgung ist von der Versorgungsspannung (PELV) und anderen Hochspannungsklemmen galvanisch getrennt.

10.6.5 Digitalausgänge

Programmierbare Digital-/Pulsausgänge	2
Klemmennummer ⁽¹⁾	XD2.14, XD2.15
Spannungsniveau am Digital-/Pulsausgang	0-24 V
Maximaler Ausgangsstrom (Körper oder Quelle)	40 mA
Maximale Last am Pulsausgang	1 kΩ
Maximale kapazitive Last am Pulsausgang	10 nF
Min. Ausgangsfrequenz am Pulsausgang	0 Hz
Max. Ausgangsfrequenz am Pulsausgang	32 kHz
Genauigkeit am Pulsausgang	Maximale Abweichung: 0,1 % der Gesamtskala
Auflösung der Pulsausgänge	12 Bit

¹ Kann auch als Eingang programmiert werden.

Der Digitalausgang ist von der Versorgungsspannung (PELV) und anderen Hochspannungsklemmen galvanisch getrennt.

10.6.6 Digitaleingänge

Programmierbare Digitaleingänge	4 (6)
Klemmennummer ⁽¹⁾	XD2.12, XD2.13, XD2.14, XD2.15, XD2.16, XD2.17

² Bei der Verwendung eines Schützes mit einer DC-Drossel im Inneren mit STO ist es wichtig, beim Ausschalten der Spule eine Rückleitung für den Strom von der Drossel herzustellen. Dies können Sie durch eine Freilaufdiode (oder alternativ eine 30- oder 50-V-MOV für schnellere Antwortzeiten) an der Drossel umsetzen. Sie können typische Schütze zusammen mit dieser Diode erwerben.

Logik	PNP oder NPN
Spannungsniveau	0-24 V DC
Spannungsniveau, logisch 0 PNP	<5 V DC
Spannungsniveau, logisch 1 PNP	>10 V DC
Spannungsniveau, logisch 0 NPN ⁽²⁾	>19 V DC
Spannungsniveau, logisch 1 NPN ⁽²⁾	<14 V DC
Maximale Spannung am Eingang	28 V DC
Pulsfrequenzbereich	0–110 kHz
(Arbeitszyklus) minimale Pulsbreite	4,5 ms
Eingangswiderstand, $R_{\rm i}$	Ca. 4 kΩ

¹ Sie können die Klemmen XD2.14 und XD2.15 auch als Ausgang programmieren.

Alle Digitaleingänge sind von der Versorgungsspannung (PELV) und anderen Hochspannungsklemmen galvanisch getrennt.

10.6.7 Puls/Drehgeber-Eingänge

Programmierbare Puls/Drehgeber-Eingänge	2/1
Klemmennummer (Pulseingänge)	XD2.15 ⁽¹⁾ , XD2.17
Klemmennummer (Drehgebereingänge) (2)	XD2.16, XD2.17
Maximalfrequenz an den Klemmen XD2.15, XD2.16, XD2.17 (Gegentakt)	110 kHz
Maximalfrequenz an den Klemmen XD2.15, XD2.16, XD2.17 (offener Kollektor)	5 kHz
Maximalfrequenz an den Klemmen XD2.15, XD2.16, XD2.17	4,0 kHz
Spannungsniveau	Siehe Steuereingang/-ausgang und Steuerdaten.
Maximale Spannung am Eingang	28 V DC
Eingangswiderstand, R _i	Ca. 4 kΩ
Pulseingangsgenauigkeit (0,1-1 kHz)	Maximale Abweichung: 0,1 % der Gesamtskala
Genauigkeit des Drehgebereingangs (1-11 kHz)	Maximale Abweichung: 0,05 % der Gesamtskala

¹ Nur FC 302.

Die Puls- und Drehgebereingänge (Klemmen XD2.15, XD2.16, XD2.17) sind galvanisch von der Versorgungsspannung PELV (Schutzkleinspannung – Protective extra low voltage) und anderen Hochspannungsklemmen getrennt.

10.6.8 Steuerungseigenschaften

Auflösung der Ausgangsfrequenz bei 0-590 Hz	±0,003 Hz
Wiederholgenauigkeit für Präz. Start/Stopp (Klemmen XD2.12, XD2.13)	≤±0,1 ms
System-Reaktionszeit (Klemmen XD2.12, XD2.13, XD2.14, XD2.15, XD2.16, XD2.17)	≤2 ms
Drehzahlregelbereich (ohne Rückführung)	1:100 der Synchrondrehzahl
Drehzahlregelbereich (mit Rückführung)	1:1000 der Synchrondrehzahl
Drehzahlgenauigkeit (ohne Rückführung)	30–4000 UPM: Abweichung ±8 UPM

² Außer STO-Eingangsklemme XD2.19.

² Drehgebereingänge: XD2.16=A, XD2.17=B.

Drehzahlgenauigkeit (mit Rückführung), je nach Auflösung des Istwertgebers	0–6000 U/min: Abweichung ±0,15 UPM
Genauigkeit der Drehmomentregelung (Drehzahlrückführung)	Maximale Abweichung ±5 % der Gesamtskala

Alle Angaben zu Steuerungseigenschaften basieren auf einem vierpoligen Asynchronmotor.

10.6.9 Relaisausgänge

Programmierbare Relaisausgänge	FC 302: 2
Klemmennummer von Relais 01 (1)	21–23 (öffnen), 21–22 (schließen)
Maximaler Belastungsstrom der Klemme (AC-1) an 21–23 (NC/Öffner), 21–22 (NO/Schließer) (ohmsche Last) (2) (3)	/ 240 V AC, 2 A
Maximaler Belastungsstrom der Klemme (AC-15) (induktive Last bei cosφ 0,4)	240 V AC, 0,2 A
Maximaler Belastungsstrom der Klemme (DC-1) an 21-22 (NO/Schließer), 21-23 (NC/Öffner) (ohmsche Last)	60 V DC, 1 A
Maximaler Belastungsstrom der Klemme (DC-13) (induktive Last)	24 V DC, 0,1 A
Klemmennummer von Relais 02 ⁽¹⁾	24–26 (öffnen), 24–25 (schließen)
Maximaler Belastungsstrom der Klemme (AC-1) an 24–25 (NO/Schließer) (ohmsch Last) (2) (3)	ne 400 V AC, 2 A
Maximale Last an Klemme (AC-15) auf 24-25 (NO/Schließer) (induktive Last bei cosφ 0,4)	240 V AC, 0,2 A
Maximaler Belastungsstrom der Klemme (DC-1) auf 24-25 (NO/Schließer) (ohmsch Last)	ne 80 V DC, 2 A
Maximaler Belastungsstrom der Klemme (DC-13) auf 24-25 (NO/Schließer) (induktive Last)	24 V DC, 0,1 A
Maximaler Belastungsstrom der Klemme (AC-1) auf 24-26 (NC/Öffner) (ohmsche Last)	240 V AC, 2 A
Maximale Last an Klemme (AC-15) auf 24-26 (NC/Öffner) (induktive Last bei $\cos \phi$ 0,4)	240 V AC, 0,2 A
Maximaler Belastungsstrom der Klemme (DC-1) auf 24-26 (NC/Öffner) (ohmsche Last)	50 V DC, 2 A
Maximaler Belastungsstrom der Klemme (DC-13) auf 24-26 (NC/Öffner) (induktive Last)	e 24 V DC, 0,1 A
Minimaler Belastungsstrom der Klemme an 21-23 (NC/Öffner), 21-22 (NO/ Schließer), 24-26 (NC/Öffner), 24-25 (NO/Schließer)	24 V DC 10 mA, 24 V AC 20 mA
Umgebung nach EN 60664-1	Überspannungskategorie III/Verschmutzungsgrad 2

¹ IEC 60947 Teile 4 und 5. Die Relaiskontakte sind durch verstärkte Isolierung (PELV – Protective extra low voltage/Schutzkleinspannung) vom Rest der Schaltung galvanisch getrennt.

10.6.10 Analogausgang

Anzahl programmierbarer Ausgänge	1
Klemme Nr.	XD2.5
Strombereich am Analogausgang	0/4 bis 20 mA
Maximale Last GND – Analogausgang <	500 Ω

² Überspannungs-Kat. II.

 $^{^3}$ UL-Anwendungen 300 V AC 2 A.

Genauigkeit am Analogausgang	Maximale Abweichung: 0,5 % der Gesamtskala
Auflösung des Analogausgangs	12 Bit

Der Analogausgang ist galvanisch von der Versorgungsspannung (PELV – Schutzkleinspannung, Protective extra low voltage) und anderen Hochspannungsklemmen getrennt.

10.6.11 Steuerkarte, RS485 serielle Schnittstelle

Klemme Nr.	XD2.2 (P,TX+, RX+), XD2.3 (N,TX-, RX-)
Klemmennummer XD2.1	Bezugspotential für die Klemmen XD2.2 und XD2.3

Die serielle RS485-Schnittstelle ist von der Versorgungsspannung (PELV, Schutzkleinspannung – Protective extra low voltage) galvanisch getrennt.

10.6.12 Steuerkartenleistung

ns
n

10.6.13 Analogeingänge

Anzahl der Analogeingänge	2
Klemme Nr.	XD2.7, XD2.8
Betriebsarten	Spannung oder Strom
Betriebsartwahl	Schalter S201 und Schalter S202
Einstellung Spannung	Schalter S201/Schalter S202 = AUS (U)
Spannungsniveau	-10 V bis +10 V (skalierbar)
Eingangswiderstand, R _i	Ca. 10 kΩ
Höchstspannung	±20 V
Strom	Schalter S201/S202=EIN (I)
Strombereich	0/4 bis 20 mA (skalierbar)
Eingangswiderstand, R _i	ca. 200 Ω
Maximaler Strom	30 mA
Auflösung der Analogeingänge	10 Bit (+ Vorzeichen)
Genauigkeit der Analogeingänge	Maximale Abweichung 0,5 % der Gesamtskala
Bandbreite	100 Hz

Die Analogeingänge sind galvanisch von der Versorgungsspannung (PELV = Protective extra low voltage/Schutzkleinspannung) und anderen Hochspannungsklemmen getrennt.

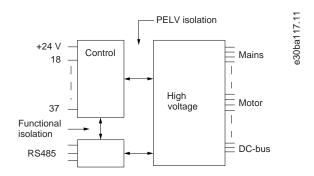


Abbildung 71: PELV-Isolierung

10.7 Filterspezifikationen

10.7.1 Spezifikationen für passive Oberschwingungsfilter

Versorgungsspannungsasymmetrie	Maximal 3 % (Frequenzumrichter müssen bis 8 % funktionsfähig bleiben)
Spannungsschwankungen	+10%–15%
Nennfrequenz	-2 %, +2 % (von 50 Hz oder 60 Hz), wenn PHF installiert ist
Überlastkapazität	150 % für 60 s in einem Zeitraum von 10 Minuten
Maximaler Einschaltstrom, Frequenzumrichterseite	Maximal 5xI _{nom Frequenzumrichter}
Maximaler Einschaltstrom, PHF-Eingangsseite	Maximal 2xI _{nom Frequenzumrichter}
Cos von IL bei 25 % IPHF, N	0,85 Ind
Cos von IL bei 50 % IPHF, N	0,88 Ind
Cos von IL bei 75 % IPHF, N	0,92 Ind
Cos von IL bei 100 % IPHF, N	0,99 Ind
Cos von IL bei 160 % IPHF, N	0,98 Ind
Leistungsreduzierung	Wie Frequenzumrichter

10.7.2 Netzdrosselspezifikationen

Alle Netzdrosseln sind mit thermischen Schaltern ausgestattet und zwecks Übertemperaturschutz zu dem schaltschrankbasierten Frequenzumrichter geführt. Weitere Informationen finden Sie im Abschnitt "Steuerfach". Die Netzdrosselkonfiguration variiert je nach Bauform und erforderlicher Spannung.

Tabelle 86: Netzdrosselkonfiguration für die Baugrößen D9h-D10h und E5h-E6h, 380-480 V

Gehäuse	Modell	Netzdrossel [A]
D9h	N110	312
	N132	312
	N160	425
D10h	N200	425
	N250	2x312
	N315	2x312

Gehäuse	Modell	Netzdrossel [A]
E5h	N355	2x425
	N400	2x425
	N450	2x425
E6h	N500	3x425
	N560	3x425

Tabelle 87: Netzdrosselkonfiguration für die Baugrößen D9h–D10h und E5h–E6h, 525–690 V

Gehäuse	Modell	Netzdrossel [A]
D9h	N110	225
	N132	225
	N160	225
D10h	N200	315
	N250	315
	N315	2x225
	N400	2x225
E5h	N450	2x315
	N500	2x315
	N560	2x315
	N630	3x225
E6h	N710	3x315
	N800	3x315

10.7.3 Spezifikationen der dU/dt-Filter

Nennspannung	3x380-690 V
Nennstrom bei 50 Hz	Bis 590 A ⁽¹⁾
Reduzierung der Motorfrequenz, 50 Hz	Nominelle
Reduzierung der Motorfrequenz, 60 Hz	Nominelle
Reduzierung der Motorfrequenz, 100 Hz	0,75 x nominal
Minimale Taktfrequenz	Keine Grenze
Maximale Taktfrequenz	Nenn-Taktfrequenz
Überlastfähigkeit	150 % für 60 s, alle 10 Minuten
Umgebungstemperatur [°C (°F)]	-10 (14) bis +45 (113)
Lagertemperatur [°C (°F)]	-25 (-13) bis +60 (150)
Transporttemperatur [°C (°F)]	-25 (-13) bis +70 (158)
Maximale Umgebungstemperatur mit Leistungsreduzierung [°C (°F)]	55 (131)
Maximale Höhe ohne Leistungsreduzierung [°C (°F)]	_

Geräuschniveau < Frequenzumrichtermodul

Tabelle 88: dU/dt Filterkonfigurationen für die Baugrößen D9h–D10h und E5h–E6h, 380–480 V

Gehäuse	Modell	Nennstrom [A]	Filter erforderlich
D9h	N110	261	1
D9h	N132	261	1
D9h	N160	418	1
D10h	N200	418	1
D10h	N250	590	1
D10h	N315	590	1
E5h	N355	418	2
E5h	N400	418	2
E5h	N450	418	2
E6h	N500	590	2
E6h	N560	590	2

Tabelle 89: dU/dt Filterkonfigurationen für die Baugrößen D9h–D10h und E5h–E6h, 525–690 V

Gehäuse	Modell	Nennstrom [A]	Filter erforderlich
D9h	N110	144	1
D9h	N132	261	1
D9h	N160	261	1
D10h	N200	418	1
D10h	N250	418	1
D10h	N315	418	1
D10h	N355	418	1
E5h	N400	590	1
E5h	N500	418	2
E5h	N560	418	2
E5h	N630	418	2
E6h	N710	590	2
E6h	N800	590	2

10.7.4 Spezifikationen für Sinusfilter

Nennspannung	3x380–480 V und 525–690 V AC
Nennstrom bei 50 Hz	212 A und 315 A für 380–480 V, 137 A und 222 A für 525–690 V ⁽¹⁾

¹ Die Nennströme für die Baugrößen E5h und E6h werden durch Parallelschaltung der Filter erreicht.

Motorfrequenz mit Leistungsreduzierung	Bis 150 Hz
Motorfrequenz ohne Leistungsreduzierung	0–70 Hz
Minimale Taktfrequenz	2 kHz für 380–480 V, 1,5 kHz für 525–690 V
Maximale Taktfrequenz	Nenn-Taktfrequenz
Überspannungskategorie	OVC III, wie in IEC61800-5-1 definiert
Überlastfähigkeit	150 % für 60 s, alle 10 Minuten
Umgebungstemperatur [°C (°F)]	-15 (5) bis +60 (140)
Lagertemperatur [°C (°F)]	-40 (-40) bis +70 (158)
Transporttemperatur [°C (°F)]	-40 (-40) bis +70 (158)
Höhe während des Betriebs	
	100 % Strom (keine Leistungsreduzierung) bis 1000 m (3280 ft)
	1 % Stromreduzierung pro 100 m (328 ft) über 1000 m (3280 ft)
	Maximal 4000 m (13123 ft) bei 500 V AC
	Maximal 2000 m (6561 ft) bei 690 V AC
Geräuschniveau	< 80 dB(A)

 $^{^{1}}$ Die Nennströme für die Baugrößen E5h und E6h werden durch Parallelschaltung der Filter erreicht.

10.8 Sicherungen und Trennschalter

10.8.1 Sicherungstypen

Schaltschranksicherungen

Schaltschranksicherungen sind eine Option für den vorgeschalteten Schutz und können als Sicherungen der UL-Klasse für die UL-Variante oder als gG-Sicherungen für die IEC-Variante bestellt werden.

Sicherungstrennschalter

Der Sicherungstrennschalter ist eine Option, die den Frequenzumrichter mit einem Sicherungsschalter sicher vom Netz trennt, der unter dem Antriebmodul installiert ist.

Trennschalter

Der Trennschalter ist optional erhältlich. Alle mit werkseitig installiertem Trennschalter bestellten und ausgelieferten Geräte benötigen eine Sicherung der UL-Klasse, um die 65 kA SCCR für das Frequenzumrichtersystem zu erfüllen.

Netzschütz

Das Netzschütz ist optional erhältlich. Alle mit werkseitig installiertem Schütz bestellten und ausgelieferten Geräte benötigen Abzweigkreissicherungen der Klasse L/J, um die 65 kA SCCR für das Frequenzumrichtersystem zu erfüllen.

Diese Option ermöglicht die Netztrennung oder -verbindung des Frequenzumrichters über einen Steuerschalter an der Steuerfachtür oder einen externen Schalter. Der externe Schalter muss mit den Klemmen XD0 verdrahtet werden. Siehe <u>5.3 Anschlussdiagramm für die schaltschrankbasierten Frequenzumrichter D9h und D10h</u> und <u>5.4 Anschlussdiagramm für die schaltschrankbasierten Frequenzumrichter E5h und E6h</u>. Das Netzschütz verfügt über 2 Zusatzkontakte (1 Schließer und 1 Öffner). Sie befinden sich an den Seiten des Schützes. Der NO-Zusatzkontakt ist werkseitig verdrahtet und wird vom System verwendet.

MCCB

Mit den empfohlenen MCCBs kann der Nennkurzschlussstrom (Short Circuit Current Rating (SCCR)) für das Frequenzumrichtersystem wie folgt ausgewiesen werden.

10.8.2 Schaltschranksicherungen

Schaltschranksicherungen sind eine Option für den vorgeschalteten Schutz und können als Sicherungen der UL-Klasse für die UL-Variante oder als gG-Sicherungen für die IEC-Variante bestellt werden.

Tabelle 90: Schaltschranksicherungen für die Modelle N110K-N315, 380-480 V

	N110	N132	N160	N200	N250	N315
IEC (Typ gG)	250 A/500 V	315 A/500 V	355 A/500 V	425 A/500 V	630 A/500 V	630 A/500 V
Mersen-Teilenr.	NH1GG50V250	NH2GG50V315	NH2GG50V355	NH3GG50V425	NH3AGG50V630	NH3AGG50V630
UL (Klasse J/L/T)	300 A/600 V	350 A/600 V	400 A/600 V	500 A/600 V	600 A/600 V	750 A/600 V
Mersen-Teilenr.	A4J300	A4J350	A4J400	A4J500	A4J600	AABY750

Tabelle 91: Schaltschranksicherungen für die Modelle N355K-N560, 380-480 V

	N355	N400	N450	N500	N560
IEC (Typ gG)	800 A/500 V	1000 A/500 V	1000 A/500 V	1000 A/500 V	1250 A/500 V
Mersen-Teilenr.	NH4GG50V800	NH4GG50V1000	NH4GG50V1000	NH4GG50V1000	NH4GG50V1250
UL (Klasse J/L/T)	800 A/600 V	1000 A/600 V	1000 A/600 V	1100 A/600 V	1200 A/600 V
Mersen-Teilenr.	A4BY800	A4BY1000	A4BY1000	A4BY1100	A4BY1200

Tabelle 92: Schaltschranksicherungen für die Modelle N110-N315, 525-690 V

	N110	N132	N160	N200	N250	N315
IEC (Typ gG)	250 A/690 V	250 A/690 V	250 A/690 V	315 A/690 V	355 A/690 V	425 A/690 V
Mersen-Teilenr.	NH2GG69V250	NH2GG69V250	NH2GG69V250	NH2GG69V315	NH3GG69V355	NH3GG69V425
UL (Klasse J/L/T)	175 A/600 V	200 A/600 V	250 A/600 V	350 A/600 V	400 A/600 V	500 A/600 V
Mersen-Teilenr.	A4J175	A4J200	A4J250	A4J350	A4J400	A4J500

Tabelle 93: Schaltschranksicherungen für die Modelle N400-N630, 525-690 V

	N400	N450	N500	N560	N630
IEC (Typ gG)	500 A/690 V	500 A/500 V	630 A/500 V	800 A/500 V	800 A/500 V
Mersen-Teilenr.	NH3GG69V500	NH3GG69V500	NH4GG69V630	NH4GG69V800	NH4GG69V800
UL (Klasse J/L/T)	600 A/600 V	600 A/600 V	650 A/600 V	750 A/600 V	800 A/600 V
Mersen-Teilenr.	A4J600	A4J600	A4BY650	A4BY750	A4BY800

Tabelle 94: Schaltschranksicherungen für die Modelle N710-N800, 525-690 V

	N710	N800
IEC (Typ gG)	1000 A/690 V	1000 A/690 V
ABB-Teilenr.	OFAA4AGG1000	OFAA4AGG1000
UL (Klasse J/L/T)	1000 A/600 V	1100 A/600 V
Mersen-Teilenr.	A4BY1000	A4BY1100

10.8.3 Schmelztrennschalter

Der Sicherungstrennschalter ist eine Option, die den Frequenzumrichter mit einem Sicherungsschalter sicher vom Netz trennt, der unter dem Antriebsmodul installiert ist. Alle Geräte, die mit einem werkseitig installierten Schmelztrennschalter bestellt und geliefert werden, verfügen über eine im Schalter integrierte Sicherung. Die Sicherung wurde so dimensioniert, dass sie 65 kA SCCR für das System erfüllt. Eingangsspannung und Nennleistung des Frequenzumrichters bestimmen die spezifische Klasse der gG-Sicherung. Eingangsspannung und Nennleistung sind auf dem Typenschild angegeben. Siehe <u>4.1 Gelieferte Teile</u>.

Tabelle 95: Schmelztrennschalter für die Modelle N110-N315, 380-480 V

	N110	N132	N160	N200	N250	N315
IEC	400 A/690 V	400 A/690 V	400 A/690 V	630 A/690 V	630 A/690 V	630 A/690 V
ABB-Teilenr.	OS400D30P	OS400D30P	OS400D30P	OS630D30P	OS630D30P	OS630D30P
UL	400 A/600 V	400 A/600 V	400 A/600 V	600 A/600 V	600 A/600 V	800 A/600 V
ABB-Teilenr.	OS400J30	OS400J30	OS400J30	OS600J30	OS600J30	OS800L30

Tabelle 96: Schmelztrennschalter für die Modelle N355-N560, 380-480 V

	N355	N400	N450	N500	N560
IEC	1250 A/690 V				
ABB-Teilenr.	OS1250D30P	OS1250D30P	OS1250D30P	OS1250D30P	OS1250D30P
UL	800 A/600 V	1200 A/600 V	1200 A/600 V	1200 A/600 V	1200 A/600 V
ABB-Teilenr.	OS800L30	OS1200L30	OS1200L30	OS1200L30	OS1200L30

Tabelle 97: Schmelztrennschalter für die Modelle N110-N315, 525-690 V

	N110	N132	N160	N200	N250	N315
IEC	400 A/690 V	400 A/690 V	400 A/690 V	630 A/690 V	630 A/690 V	630 A/690 V
ABB-Teilenr.	OS400D30P	OS400D30P	OS400D30P	OS630D30P	OS630D30P	OS630D30P
UL	400 A/600 V	600 A/600 V				
ABB-Teilenr.	OS400J30	OS400J30	OS400J30	OS400J30	OS400J30	OS600J30

Tabelle 98: Schmelztrennschalter für die Modelle N400-N630, 525-690 V

	N400	N450	N500	N560	N630
IEC	630 A/690 V	630 A/690 V	1250 A/690 V	1250 A/690 V	1250 A/690 V

	N400	N450	N500	N560	N630
ABB-Teilenr.	OS630D30P	OS630D30P	OS1250D30P	OS1250D30P	OS1250D30P
UL	600 A/600 V	600 A/600 V	800 A/600 V	800 A/600 V	800 A/600 V
ABB-Teilenr.	OS600J30	OS600J30	OS800L30	OS800L30	OS800L30

Tabelle 99: Sicherungstrennschalter für die Modelle N710-N800, 525-690 V

	N710	N800
IEC	1250 A/690 V	1250 A/690 V
ABB-Teilenr.	OS1250D30P	OS1250D30P
UL	1200 A/600 V	1200 A/600 V
ABB-Teilenr.	OS1200L30	OS1200L30

10.8.4 Trennschalter

Der Trennschalter ist optional erhältlich. Alle mit werkseitig installiertem Trennschalter bestellten und ausgelieferten Geräte benötigen eine Sicherung der UL-Klasse, um die 65 kA SCCR für das Frequenzumrichtersystem zu erfüllen.

Tabelle 100: Trennschalter für die Modelle N110-N315, 380-480 V

	N110	N132	N160	N200	N250	N315
IEC	400 A/600 V	400 A/600 V	400 A/600 V	630 A/600 V	630 A/600 V	630 A/600 V
ABB-Teilenr.	OT400E30	OT400E30	OT400E30	OT630E30	OT630E30	OT630E30
UL	400 A/690 V	400 A/690 V	400 A/690 V	600 A/690 V	600 A/690 V	800 A/690 V
ABB-Teilenr.	OT400U30	OT400U30	OT400U30	OT600U30	OT600U30	OT800U30

Tabelle 101: Trennschalter für die Modelle N355-N560, 380-480 V

	N355	N400	N450	N500	N560
IEC	1000 A/600 V	1000 A/600 V	1250 A/600 V	1250 A/600 V	1250 A/600 V
ABB-Teilenr.	OT1000E30	OT1000E30	OT1250E30	OT1250E30	OT1250E30
UL	800 A/690 V	1200 A/690 V	1200 A/690 V	1200 A/690 V	1200 A/690 V
ABB-Teilenr.	OT800U30	OT1200U30	OT1200U30	OT1200U30	OT1200U30

Tabelle 102: Trennschalter für die Modelle N110-N315, 525-690 V

	N110	N132	N160	N200	N250	N315
IEC	400 A/600 V	400 A/600 V	400 A/600 V	630 A/600 V	630 A/600 V	630 A/600 V
ABB-Teilenr.	OT400E30	OT400E30	OT400E30	OT630E30	OT630E30	OT630E30
UL	400 A/690 V	400 A/690 V	400 A/690 V	600 A/690 V	600 A/690 V	600 A/690 V
ABB-Teilenr.	OT400U30	OT400U30	OT400U30	OT600U30	OT600U30	OT600U30

Tabelle 103: Trennschalter für die Modelle N400-N630, 525-690 V

	N400	N450	N500	N560	N630
IEC	630 A/600 V	630 A/600 V	630 A/600 V	1000 A/600 V	1000 A/600 V
ABB-Teilenr.	OT630E30	OT630E30	OT630E30	OT1000E30	OT1000E30
UL	600 A/690 V	600 A/690 V	600 A/690 V	800 A/690 V	800 A/690 V
ABB-Teilenr.	OT600U30	OT600U30	OT600U30	OT800U30	OT800U30

Tabelle 104: Trennschalter für die Modelle N710-N800, 525-690 V

	N710	N800
IEC	1250 A/600 V	1250 A/600 V
ABB-Teilenr.	OT1250E30	OT1250E30
UL	1200 A/690 V	1200 A/690 V
ABB-Teilenr.	OT1200U30	OT1200U30

10.8.5 Schützsicherungen

Das Netzschütz ist optional erhältlich. Alle mit werkseitig installiertem Schütz bestellten und ausgelieferten Geräte benötigen Abzweigkreissicherungen der Klasse L/J, um die 65 kA SCCR für das Frequenzumrichtersystem zu erfüllen.

Diese Option ermöglicht die Netztrennung oder -verbindung des Frequenzumrichters über einen Steuerschalter an der Steuerfachtür oder einen externen Schalter. Der externe Schalter muss mit den Klemmen XD0 verdrahtet werden. Siehe <u>5.3 Anschlussdiagramm für die schaltschrankbasierten Frequenzumrichter D9h und D10h</u> und <u>5.4 Anschlussdiagramm für die schaltschrankbasierten Frequenzumrichter E5h und E6h</u>. Das Netzschütz verfügt über 2 Zusatzschalter (1 Schließer und 1 Öffner). Diese Schalter befinden sich an den Seiten des Schützes. Der NO-Zusatzschalter ist werkseitig verdrahtet und wird vom System verwendet.

Spezifikationen des Zusatzschalters

Nennbetriebsstrom bei 230 V	6 A
Nennbetriebsstrom bei 380 V	4 A
Nennbetriebsstrom bei 480 V	1,5 A
Konventioneller thermischer Strom, Ith	10 A
Nennspannung	500 V AC
Bemessungsstoßspannungsfestigkeit	600 V AC

Tabelle 105: Netzschützsicherungen für die Modelle N110-N315, 380-480 V

	N110	N132	N160	N200	N250	N315
IEC	185 A/1000 V	185 A/1000 V	185 A/1000 V	400 A/1000 V	580 A/1000 V	500 A/1000 V
Eaton-Teilenr.	XTCE400M22A	XTCE400M22A	XTCE400M22A	XTCE400M22A	XTCE400M22A	XTCE500M22A
UL	185 A/1000 V	185 A/1000 V	185 A/1000 V	400 A/1000 V	400 A/1000 V	580 A/1000 V
Eaton-Teilenr.	XTCE400M22A	XTCE400M22A	XTCE400M22A	XTCE400M22A	XTCE580N22A	XTCE580N22A

Tabelle 106: Netzschützsicherungen für die Modelle N355-N560, 380-480 V

	N355	N400	N450	N500	N560
IEC	580 A/1000 V	580 A/1000 V	580 A/1000 V	820 A/1000 V	820 A/1000 V
Eaton-Teilenr.	XTCE580N22A	XTCE580N22A	XTCE580N22A	XTCE820N22A	XTCE820N22A
UL	820 A/1000 V	820 A/1000 V	820 A/1000 V	1000 A/1000 V	1000 A/1000 V
Eaton-Teilenr.	XTCE820N22A	XTCE820N22A	XTCE820N22A	XTCEC10N22A	XTCEC10N22A

Tabelle 107: Netzschützsicherungen für die Modelle N110-N315, 525-690 V

	N110	N132	N160	N200	N250	N315
IEC	185 A/1000 V	185 A/1000 V	185 A/1000 V	400 A/1000 V	400 A/1000 V	400 A/1000 V
Eaton-Teilenr.	XTCE400H22A	XTCE400H22A	XTCE400H22A	XTCE400M22A	XTCE400M22A	XTCE400M22A
UL	185 A/1000 V	185 A/1000 V	185 A/1000 V	400 A/1000 V	400 A/1000 V	400 A/1000 V
Eaton-Teilenr.	XTCE400H22A	XTCE400H22A	XTCE400H22A	XTCE400M22A	XTCE400M22A	XTCE400M22A

Tabelle 108: Netzschützsicherungen für die Modelle N400-N630, 525-690 V

	N400	N450	N500	N560	N630
IEC	400 A/1000 V	580 A/1000 V	580 A/1000 V	580 A/1000 V	580 A/1000 V
Eaton-Teilenr.	XTCE400M22A	XTCE580N22A	XTCE580N22A	XTCE580N22A	XTCE580N22A
UL	400 A/1000 V	580 A/1000 V	580 A/1000 V	580 A/1000 V	580 A/1000 V
Eaton-Teilenr.	XTCE400M22A	XTCE580N22A	XTCE580N22A	XTCE580N22A	XTCE580N22A

Tabelle 109: Netzschützsicherungen für die Modelle N710-N800, 525-690 V

	N710	N800
IEC	580 A/1000 V	820 A/1000 V
Eaton-Teilenr.	XTCE580N22A	XTCE820N22A
UL	820 A/1000 V	1000 A/1000 V
Eaton-Teilenr.	XTCE820N22A	XTCEC10N22A

10.8.6 Kompaktleistungsschalter

Der Kompaktleistungsschalter (MCCB) ist eine Option, in der zum Schutz des Frequenzumrichters eine temperatursensitive Vorrichtung mit einer stromsensitiven elektromagnetischen Vorrichtung kombiniert wird.

Tabelle 110: MCCB-Teilenummern für die Modelle N110-N315, 380-480 V

	N110	N132	N160	N200	N250	N315
IEC	400 A/600 V	400 A/600 V	400 A/600 V	800 A/600 V	800 A/600 V	800 A/600 V
ABB-Teilenr.	T5L400T	T5L400T	T5L400T	T6L800T	T6L800T	T6L800T
UL	400 A/690 V	400 A/690 V	400 A/690 V	600 A/690 V	600 A/690 V	800 A/690 V

	N110	N132	N160	N200	N250	N315
ABB-Teilenr.	T5L400TW	T5L400TW	T5L400TW	T6L600TW	T6L600TW	T6L800TW

Tabelle 111: MCCB-Teilenummern für die Modelle N355K-N560, 380-480 V

	N355	N400	N450	N500	N560
IEC	1000 A/690 V	1000 A/690 V	1250 A/690 V	1250 A/690 V	1600 A/690 V
ABB- Teilenr.	T71000LSPR231 DS- LS	T71000LSPR231 DS- LS	T71250LSPR231 DS-LS	T71250LSPR231 DS- LS	T71600LSPR231 DS- LS
UL	1200 A/600 V	1200 A/600 V	1200 A/600 V	1600 A/600 V	1600 A/600 V
ABB- Teilenr.	T7L1200PR231/P	T7L1200PR231/P	T7LQ1200PR231/P	T8V1600PR231/P	T8V1600PR231/P

Tabelle 112: MCCB-Teilenummern für die Modelle N110-N315, 525-690 V

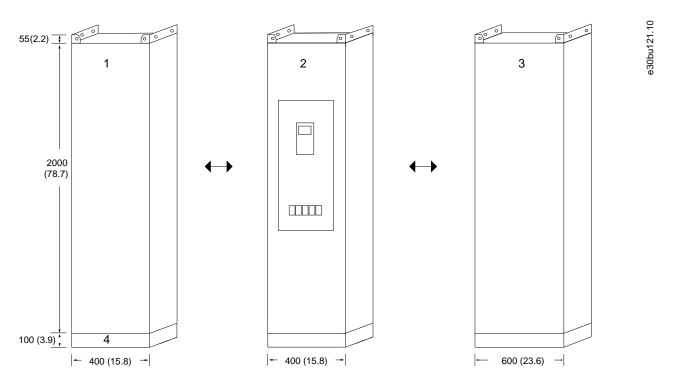
	N110	N132	N160	N200	N250	N315
IEC	400 A/690 V	400 A/690 V	400 A/690 V	630 A/690 V	630 A/690 V	630 A/690 V
ABB-Teilenr.	T5L400T	T5L400T	T5L400T	T6L630T	T6L630T	T6L630T
UL	400 A/600 V	400 A/600 V	400 A/600 V	600 A/600 V	600 A/600 V	600 A/600 V
ABB-Teilenr.	T5L400TW	T5L400TW	T5L400TW	T6L600TW	T6L600TW	T6L600TW

Tabelle 113: MCCB-Teilenummern für die Modelle N400-N630, 525-690 V

	N400	N450	N500	N560	N630
IEC	600 A/690 V	1000 A/690 V	1000 A/690 V	1000 A/690 V	1000 A/690 V
ABB-Tei- lenr.	T6L630T	T7L1000LSPR23 1 DS- LS	T7L1000LSPR23 1 DS- LS	T7L1000LSPR23 1 DS-LS	T7L1000LSPR23 1 DS-LS
UL	600 A/600 V	1000 A/600 V	1000 A/600 V	1000 A/600 V	1000 A/600 V
ABB-Tei- lenr.	T6LQ600TW	T7L1000PR231/P	T7L1000PR231/P	T7LQ1000PR231/P	T7LQ1000PR231/P

Tabelle 114: MCCB-Teilenummern für die Modelle N710–N800, 525–690 V

	N710	N800
IEC	1250 A/690 V	1250 A/690 V
ABB-Teilenr.	T7L1250LSPR23 1 DS-LS	T7L1250LSPR23 1 DS-LS
UL	1200 A/600 V	1200 A/600 V
ABB-Teilenr.	T7L1200PR231/ P	T7L1200PR231/ P


10.9 Gehäuseabmessungen

10.9.1 Sockelabmessungen

Der Schaltschranksockel ist in 3 Größen erhältlich:

- 100 mm (3,9 Zoll)
- 200 mm (7,9 Zoll)
- 400 mm (15,8 Zoll)

10.9.2 Abmessungen des schaltschrankbasierten Frequenzumrichters D9h

1	Passiver Oberschwingungsfilter/Netzdrosselschaltschrank	2	D9h-Frequenzumrichter-Schaltschrank
3	Sinusfilter-Schrank	4	Standardsockel

Abbildung 72: Abmessungen für Baugröße D9h mit Standardsockel

10.9.3 Abmessungen des schaltschrankbasierten Frequenzumrichters D10h

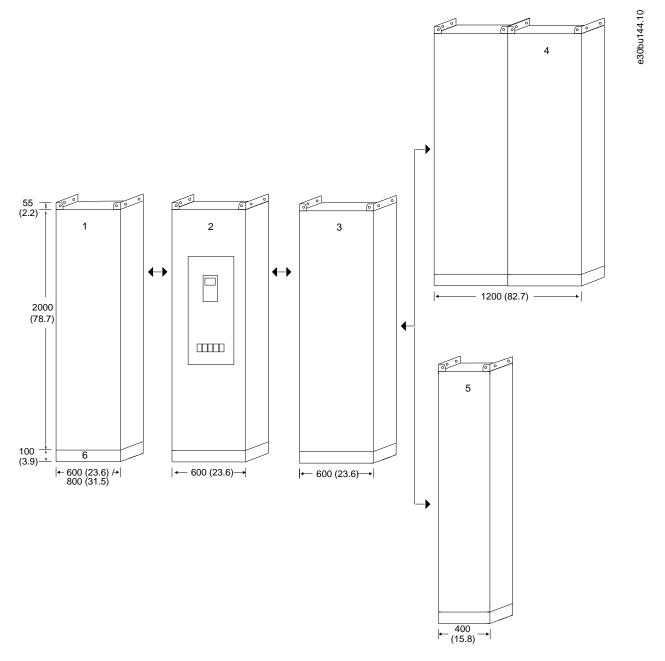
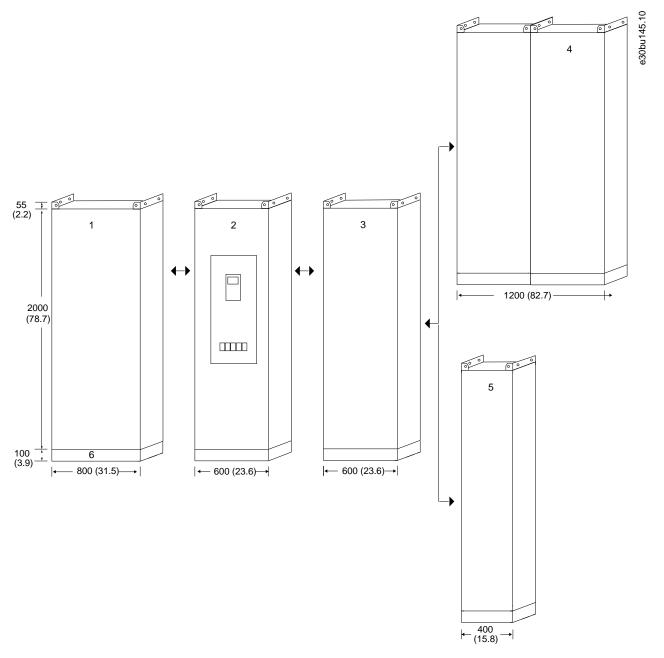



Abbildung 73: Abmessungen für Baugröße D10h mit Standardsockel

5 Standardsockel

10.9.4 Abmessungen des schaltschrankbasierten Frequenzumrichters E5h



1 Passiver Oberschwingungsfilter/Netzdrosselschaltschrank	2 Optionsschrank
3 E5h-Frequenzumrichter-Schaltschrank	4 Sinusfilter-Schrank
5 dU/dt-Schaltschrank	6 Standardsockel

Abbildung 74: Abmessungen für Baugröße E5h mit Standardsockel

10.9.5 Abmessungen des schaltschrankbasierten Frequenzumrichters E6h

1 Passiver Oberschwingungsfilter/Netzdrosselschaltschrank	2 Optionsschrank
3 E6h-Frequenzumrichter-Schaltschrank	4 Sinusfilter-Schrank
5 dU/dt-Schaltschrank	6 Standardsockel

Abbildung 75: Abmessungen für Baugröße E6h mit Standardsockel

10.10 Luftzirkulation im Gehäuse

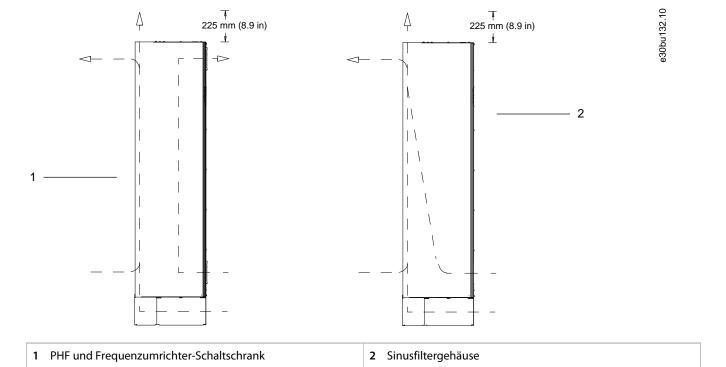


Abbildung 76: Luftzirkulation im Gehäuse

10.11 Nenndrehmomente für Schrauben

Wenden Sie beim Festziehen von Schrauben an den Positionen, die in der Tabelle aufgeführt sind, das richtige Anzugsdrehmoment an. Ein zu geringes oder zu hohes Anzugsdrehmoment beim Festziehen einer elektrischen Verbindung führt zu einem schlechten elektrischen Anschluss. Verwenden Sie einen Drehmomentschlüssel, um das richtige Drehmoment zu erzielen.

Tabelle 115: Nenndrehmomente für Schrauben

Position	Schraubengröße	Drehmoment [Nm (in-lb)]
Netzklemmen	M10/M12	19 (168)/37 (335)
Motorklemmen	M10/M12	19 (168)/37 (335)
Erdungsklemmen	M8/M10	9,6 (84)/19,1 (169)
Bremsklemmen	M8	9.6 (84)
Anschlussklemmen zur Zwischenkreiskopplung	M10/M12	19 (168)/37 (335)
Relaisklemmen	-	0,5 (4)
Tür/Klappenabdeckung	M5	2,3 (20)
Kabeleinführungsplatte	M5	2,3 (20)
Kühlkörper-Zugangsdeckel	M5	2,3 (20)
Abdeckung serielle Kommunikation	M5	2,3 (20)

11 Anhang

11.1 Konventionen

- Nummerierte Listen zeigen Vorgehensweisen.
- Aufzählungslisten zeigen weitere Informationen und Beschreibung der Abbildungen.
- Kursivschrift bedeutet:
 - Querverweise.
 - Link.
 - Fußnoten.
 - Parametername.
 - Parametergruppenname.
 - Parameteroption.
- Alle Abmessungen in mm (Zoll).

11.2 Abkürzungen

Tabelle 116: Abkürzungen, Akronyme und Symbole

Laufzeit	Definition
°C	Grad Celsius
°F	Grad Fahrenheit
Ω	Ohm
AC	Wechselstrom
AEO	Automatische Energieoptimierung
ACP	Application Control Processor (Anwendungssteuerungsprozessor)
AMA	Automatische Motoranpassung
AWG	American Wire Gauge = Amerikanisches Drahtmaß
СРИ	Central Processing Unit (Zentrale Recheneinheit)
CSIV	Customer Specific Initialisation Values (Kundenspezifische Initialisierungswerte)
СТ	Stromwandler
DC	Gleichstrom
DVM	Digitaler Voltmeter
EEPROM	Electrically Erasable Programmable Read-Only Memory
EMV	Electromagnetic Compatibility (Elektromagnetische Verträglichkeit)
EMI	EMV-Störungen
ESD	Elektrostatische Entladung
ETR	Elektronisches Thermorelais
f _{M,N}	Motornennfrequenz
HF	Hochfrequenz

196 | Danfoss A/S © 2018.10

Laufzeit	Definition
HLK	Heizung, Lüftung und Klimatisierung
Hz	Hertz
I _{LIM}	Stromgrenze
I _{INV}	Wechselrichter-Nennausgangsstrom
I _{M,N}	Motornennstrom
I _{VLT,MAX}	Maximaler Ausgangsstrom
I _{VLT,N}	Vom Frequenzumrichter gelieferter Ausgangsnennstrom
IEC	Internationale Elektrotechnische Kommission
IGBT	Insulated-Gate Bipolar Transistor
I/O	Eingang/Ausgang
IP	Schutzart
kHz	Kilohertz
kW	Kilowatt
L _d	Motor D-Achsen-Induktivität
Lq	Motor Q-Achsen-Induktivität
LC	Drossel-Kondensator
LCP	Local Control Panel (LCP-Bedieneinheit)
LED	Light Emitting Diode (Leuchtdiode)
LOP	LOP-Einheit
mA	Milliampere
МСВ	Miniature Circuit Breakers (Miniaturtrennschalter)
MCCB	Kompaktleistungsschalter
MCO	Motion Control Option (Bewegungssteuerungsoption)
MCP	Motor Control Processor (Motorsteuerungsprozessor)
MCT	Motion Control Tool
MDCIC	Multi-Drive Control Interface Card
mV	Millivolt
NEMA	National Electrical Manufacturers Association (Nationale Vereinigung von Elektroherstellern)
NTC	Negativer Temperaturkoeffizient
$P_{M,N}$	Motornennleistung
PCB	Leiterplatte
PE	Schutzleiter
PELV	PELV (Schutzkleinspannung - Protective Extra Low Voltage)
PHF	Passiver Oberschwingungsfilter

Laufzeit	Definition
PID	Proportional integriert differential
SPS	Speicherprogrammierbare Steuerung
P/N	Teilenummer
PROM	Programmable Read-Only Memory
PS	Power Section (Leistungsteil)
PTC	Positiver Temperaturkoeffizient
PWM	Pulsbreitenmodulation (Pulse Width Modulation)
R _S	Statorwiderstand
RAM	Random-Access Memory
Fehlerstromschutzschalter	Fehlerstromschutzschalter
rückspeisefähig	Rückspeiseklemmen
EMV	Funkstörungen
EFF	Effektivwert (zyklisch alternierender elektrischer Strom)
U/min	Umdrehungen pro Minute
SCR	Gesteuerter Silizium-Gleichrichter (Silicon Controlled Rectifier)
SMPS	Schaltnetzteil SMPS
S/N	Seriennummer
STO	Safe Torque Off
T _{LIM}	Drehmomentgrenze
U _{M,N}	Motornennspannung
V	Volt
VVC	Spannungsvektorsteuerung (Voltage Vector Control)
X _h	Hauptreaktanz des Motors

11.3 Werkseitige Parametereinstellungen (International/Nordamerika)

Die Einstellung von *Parameter 0-03 Ländereinstellungen* auf [0] International oder [1] Nordamerika ändert die Werkseinstellungen einiger Parameter. Tabelle 10.2 zeigt eine Liste der davon betroffenen Parameter.

Tabelle 117: Werkseitige Parametereinstellungen (International/Nordamerika) der VLT[®] FC-Serie

Parameter	Internationale Werkseinstellung	Nordamerikanische Werkseinstellung
Parameter 0-03 Ländereinstellungen	International	Nordamerika
Parameter 0-71 Datumsformat	LL-WW-III	MM/TT/LLL
Parameter 0-72 Uhrzeitformat	24 h	12 h
Parameter 1-23 Motorfrequenz	50 Hz	60 Hz

Parameter	Internationale Werkseinstellung	Nordamerikanische Werkseinstellung
Parameter 1-25 Motornenndrehzahl	1400 U/min	1680 U/min
Parameter 1-53 Steuerprinzip Umschaltpunkt	16.7	20.0
Parameter 1-56 U/f-Kennlinie	50 Hz	60 Hz
Parameter 6-15 Klemme 53 Skal. Max. Soll-/Istwert Wert	1500 U/min	1800 U/min
Parameter 14-37 Feldschwächungsdrehzahl	1400 U/min	1680 U/min

11.4 Erforderliche Parametereinstellungen für Frequenzumrichteroptionen

Bei einem Zurücksetzen auf Werkseinstellungen des Frequenzumrichters werden alle Parameter des Frequenzumrichters auf ihre Werkseinstellungen zurückgesetzt. Mehrere Frequenzumrichteroptionen verfügen über Parametereinstellungen, die anders als die Werkseinstellungen konfiguriert werden müssen, damit die Optionen ordnungsgemäß arbeiten.

Tabelle 118: Parametereinstellung für die Aktivfilteroption (Typencode-Zeichen 7 = A)

Parameter	Ändern Sie den Wert zu	
Parameter 5-02 Klemme 29 Funktion	[1] Ausgang	

Tabelle 119: Parametereinstellungen für die Passivfilteroption (Typencode-Zeichen 7 = P/H/L/U)

Parameter	Ändern Sie den Wert zu	
Parameter 5-02 Klemme 29 Funktion	[1] Ausgang	
Parameter 5-10 Klemme 18 Digitaleingang	[51] Externe Verriegelung	
Parameter 5-31 Klemme 29 Digitalausgang	[188] AHF-Kondensatoranschluss	

Tabelle 120: Parametereinstellungen für die dU/dt- und Sinusfilteroptionen (Typencode-Zeichen 18 = D/S/1/2)

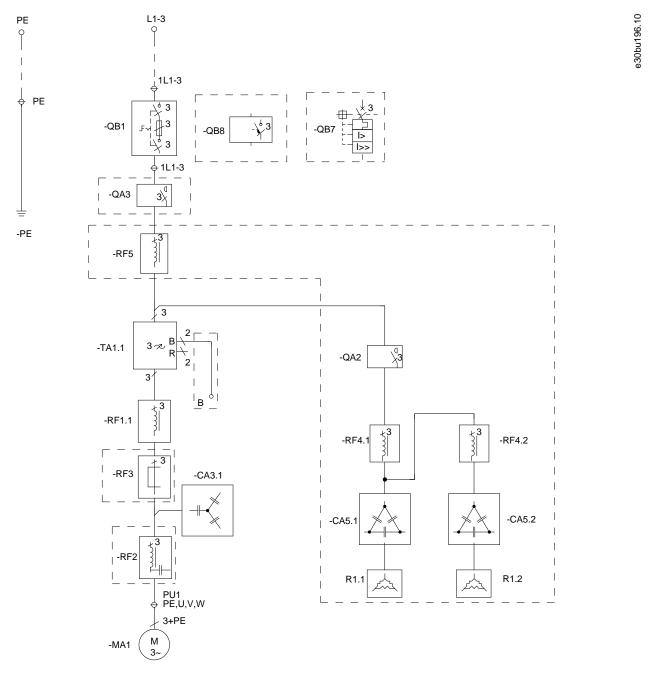
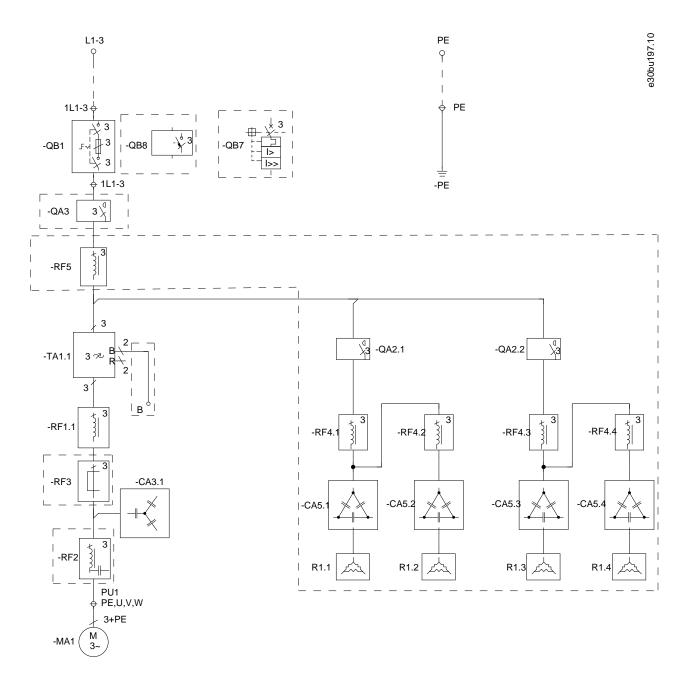

Parameter	Ändern Sie den Wert zu
Parameter 5-02 Klemme 29 Funktion	[1] Ausgang
Parameter 14-52 Lüftersteuerung	[3] Ein 100 %

Tabelle 121: Parametereinstellungen für die Anzeigeleuchte-n + Reset-Tasten-Option (Typencode-Zeichen 28–29 = D1/DA/DB/DC/DD/DE)

Parameter	Ändern Sie den Wert zu
Parameter 5-40 Relaisfunktion [1]	[5] In Betrieb
Parameter 5-40 Relaisfunktion [2]	[5] In Betrieb
Parameter 5-11 Klemme 19 Digitaleingang	[1] Reset

11.5 Blockschaltbilder

-EMV	Filter für elektromagnetische Verträglichkeit (EMV)	R1 Widerstand
-RF5	Passiver Oberschwingungsfilter (PHF) L0	-RF4 PHF-Drosseln
-CA5	PHF-Kondensatoren	-QA2 PHF-Schütz
-RFL	Netzdrossel	-QAF PHF-Relais
-QB7	Kompaktleistungsschalter (MCCB)	-QA3 Netzschütz



-QB2	Netzsicherungsschalter	-QB8	Netztrennschalter
-MA7	dU/dt- und Sinusfilterlüfter	-MA8	PHF-Lüfter
-RF2	Sinusfilterdrossel	-CA4	Sinusfilterkondensator
-RF1	dU/dt-Filterdrossel	-CA3	dU/dt-Filterkondensator
-RF3	Gleichtaktfilter	-MA1	Motor (Antriebsseite)
-TA1	Frequenzumrichtermodul	LCP	Local Control Panel (LCP-Bedieneinheit)

Abbildung 77: Fluss des elektrischen Stroms bei den Baugrößen D9h/D10h

-EMV	Filter für elektromagnetische Verträglichkeit (EMV)	R1 Widerstand
-RF5	Passiver Oberschwingungsfilter (PHF) L0	-RF4 PHF-Drosseln
-CA5	PHF-Kondensatoren	-QA2 PHF-Schütz
-RFL	Netzdrossel	-QAF PHF-Relais
-QB7	Kompaktleistungsschalter (MCCB)	-QA3 Netzschütz
-QB2	Netzsicherungsschalter	-QB8 Netztrennschalter
-MA7	dU/dt- und Sinusfilterlüfter	-MA8 PHF-Lüfter

-RF2 Sinusfilterdrossel	-CA4 Sinusfilterkondensator
-RF1 dU/dt-Filterdrossel	-CA3 dU/dt-Filterkondensator
-RF3 Gleichtaktfilter	-MA1 Motor (Antriebsseite)
-TA1 Frequenzumrichtermodul	LCP Local Control Panel (LCP-Bedieneinheit)

Abbildung 78: Fluss des elektrischen Stroms bei den Baugrößen E5h/E6h

11.6 Verlustleistungen an Eingangsleistungsoption

11.6.1 Verlustleistungen an Schützen

Tabelle 122: Verlustleistungen an Schützoption, 380-500 V (Verlustleistungen sind in Watt angegeben)

Modell	380-440 V		dell 380–440 V 441–500 V		441–500 V	
-	NO	но	NO	НО		
N90K	16	11	13	9		
N110	25	16	21	13		
N132	36	25	33	21		
N160	57	36	47	33		
N200	42	28	36	24		
N250	63	42	52	36		
N315	62	51	50	42		
N355	79	62	66	50		
N400	91	69	76	66		
N450	74	61	58	51		
N500	94	74	76	58		

Tabelle 123: Verlustleistungen an Schützoption, 525–690 V (Verlustleistungen sind in Watt angegeben)

Modell	525–550 V		551-690 V	
-	NO	но	NO	НО
N90K	7	5	6	4
N110	10	7	9	6
N132	15	10	13	9
N160	23	15	21	13
N200	33	23	30	21
N250	47	33	43	30
N315	63	47	58	43
N355	40	28	37	26
N400	50	33	45	30

Modell	525–550 V		dell 525–550 V 551–690 V		
N500	64	50	59	45	
N560	72	64	72	59	
N630	83	62	76	57	
N710	76	56	69	51	

11.6.2 Verlustleistungen an Sicherungstrennschaltern

Tabelle 124: Verlustleistungen an Sicherungstrennschalter-Option, 380–500 V (Verlustleistungen sind in Watt angegeben)

Modell	380-440 V		441–500 V	
-	NO	НО	NO	НО
N90K	71	49	57	40
N110	89	59	76	48
N132	131	90	121	76
N160	142	91	119	83
N200	155	105	132	88
N250	233	155	193	132
N315	188	156	151	127
N355	202	158	168	127
N400	233	176	194	168
N450	282	233	222	194
N500	305	241	246	189

Tabelle 125: Verlustleistungen an Sicherungstrennschalter-Option, 525–690 V (Verlustleistungen sind in Watt angegeben)

Modell	525–550 V		551-690 V	
_	NO	НО	NO	НО
N90K	29	20	27	18
N110	41	29	37	27
N132	63	41	57	37
N160	71	45	65	41
N200	101	70	92	64
N250	118	84	108	77
N315	151	112	138	102
N355	191	135	175	125
N400	134	90	123	83
N500	154	119	141	109

Modell 525–550 V		525–550 V		
N560	173	154	173	141
N630	208	155	190	142
N710	282	208	258	190

11.6.3 Verlustleistungen an Trennschaltern

Tabelle 126: Verlustleistungen an Option mit Trennschalter, 380–500 V (Verlustleistungen sind in Watt angegeben)

Modell	380-440 V		441–500 V	
-	NO	но	NO	но
N90K	8	6	7	5
N110	13	8	11	7
N132	19	13	17	11
N160	29	19	25	17
N200	44	29	37	25
N250	65	44	54	37
N315	25	21	20	17
N355	32	25	26	20
N400	36	27	30	26
N450	43	36	34	30
N500	55	43	44	34

Tabelle 127: Verlustleistungen an Option mit Trennschalter, 525–690 V (Verlustleistungen sind in Watt angegeben)

Modell	525-550 V		551–690 V	
-	NO	но	NO	НО
N90K	4	2	3	2
N110	5	4	5	3
N132	8	5	7	5
N160	12	8	11	7
N200	17	12	16	11
N250	24	17	22	16
N315	33	24	30	22
N355	42	29	38	27
N400	52	35	47	32
N500	20	16	19	14
N560	23	20	23	19

Modell	525–550 V		551–690 V	
N630	32	24	30	22
N710	44	32	40	30

11.6.4 Verlustleistungen an MCCB

Tabelle 128: Verlustleistungen an MCCB-Option, 380–500 V (Verlustleistungen sind in Watt angegeben)

Modell	380-440 V		441–500 V	
-	NO	но	NO	НО
N90K	25	18	20	14
N110	38	25	32	20
N132	56	38	51	32
N160	54	35	45	32
N200	80	54	68	45
N250	120	80	100	68
N315	62	52	50	42
N355	80	62	66	50
N400	92	70	77	66
N450	112	92	88	77
N500	92	73	74	57

Tabelle 129: Verlustleistungen an MCCB-Optionen, 525–690 V (Verlustleistungen sind in Watt angegeben)

Modell	525–550 V		551-690 V	
-	NO	но	NO	но
N90K	11	7	10	7
N110	15	11	14	10
N132	23	15	21	14
N160	22	14	20	13
N200	32	22	29	20
N250	45	32	41	29
N315	61	45	56	41
N355	43	30	39	28
N400	53	36	49	33
N500	69	53	63	49
N560	77	69	77	63
N630	84	63	77	57

Modell	525–550 V		551–690 V	
N710	114	84	104	77

11.6.5 Verlustleistungen an passiven Oberschwingungsfiltern

Tabelle 130: Verlustleistungen an passiver Oberschwingungsfilter-Option, 380–500 V (Verlustleistungen sind in Watt angegeben)

Modell	380-440 V		441–500 V	
-	NO	НО	NO	но
N90K	1083	841	1083	841
N110	1284	1083	1284	1083
N132	1511	1284	1511	1284
N160	1704	1511	1704	1511
N200	1814	1704	1814	1704
N250	2242	1814	1980	1814
N315	2302	2242	2242	1980
N355	2498	2302	2302	2242
N400	2613	2498	2498	2302
N450	2838	2613	2613	2498
N500	3160	2838	2838	2613

Tabelle 131: Verlustleistungen an passiver Oberschwingungsfilter-Option, 525–690 V (Verlustleistungen sind in Watt angegeben)

Modell	525–550 V		551-690 V	
-	NO	НО	NO	НО
N90K	3406	2689	2689	2151
N110	4302	3406	3406	2689
N132	5199	4302	4302	3406
N160	6454	5199	5199	4302
N200	8246	6454	6454	5199
N250	10308	8246	8246	6454
N315	10308	10308	10308	8246
N355	7768	6872	6872	5498
N400	10995	6872	7768	6872
N500	9919	9919	8605	7768
N560	10995	9919	9919	8605
N630	13744	10995	10995	9919
N710	13744	13744	13744	10995

11.6.6 Verlustleistungen an dU/dt-Filtern

Tabelle 132: Verlustleistungen an dU/dt-Filtern, 380-500 V (Verlustleistungen sind in Watt angegeben)

Modell	380-440 V		441–500 V	
-	NO	но	NO	но
N90K	350	244	281	199
N110	526	350	448	281
N132	327	223	300	190
N160	514	327	429	300
N200	834	565	710	472
N250	1251	834	1036	710
N315	713	593	573	480
N355	914	713	757	573
N400	1054	795	878	757
N450	1402	1158	1101	964
N500	1774	1402	1434	1101

Tabelle 133: Verlustleistungen an dU/dt-Filteroption, 525–690 V (Verlustleistungen sind in Watt angegeben)

Modell	525-550 V		551-690 V	
-	NO	но	NO	НО
N90K	453	308	414	281
N110	204	146	187	134
N132	314	204	287	187
N160	498	314	456	287
N200	302	211	277	193
N250	427	302	390	277
N315	575	427	527	390
N355	800	565	733	523
N400	989	666	905	608
N500	585	450	535	412
N560	654	585	654	535
N630	959	715	878	654
N710	1430	1054	1308	964

208 | Danfoss A/S © 2018.10

11.6.7 Verlustleistungen an Sinusfiltern

Tabelle 134: Verlustleistungen an Sinusfilteroption, 380–500 V (Verlustleistungen sind in Watt angegeben)

Modell	380-440 V		441–500 V	
-	NO	НО	NO	НО
N90K	1320	920	1060	752
N110	1363	906	1161	728
N132	2000	1363	1838	1161
N160	2291	1457	1914	1339
N200	2322	1572	1978	1313
N250	3484	2322	2885	1978
N315	3179	2643	2556	2141
N355	4075	3179	3375	2556
N400	4699	3547	3913	3375
N450	3902	3225	3066	2685
N500	4939	3902	3991	3066

Tabelle 135: Verlustleistungen an Sinusfilteroption, 525–690 V (Verlustleistungen sind in Watt angegeben)

Modell	525–550 V		551–690 V	
-	NO	НО	NO	НО
N90K	1100	748	1006	684
N110	1065	762	975	696
N132	1640	1065	1496	975
N160	1876	1184	1716	1080
N200	1863	1299	1706	1188
N250	2630	1863	2401	1706
N315	3545	2630	3246	2401
N355	3237	2286	2967	2116
N400	4004	2697	3663	2463
N500	3603	2772	3296	2536
N560	4027	3603	4027	3296
N630	5909	4406	5406	4027
N710	8018	5906	7330	5406

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.

Danfoss A/S Ulsnaes 1 DK-6300 Graasten vlt-drives.danfoss.com

